POINT OF CARE DIAGNOSTIC TESTING WORLD MARKETS
(SAMPLE COPY, NOT FOR RESALE)

Trends, Industry Participants, Product Overviews and Market Drivers
TABLE OF CONTENTS

1. **Overview** 18
 1.1 About This Report 18
 1.2 Scope of the Report 20
 1.3 Objectives 20
 1.4 Methodology 20
 1.5 Executive Summary 22

2. Overview of Diagnostic Testing Point of Care Markets 26
 2.1 Key Issues in the POC Diagnostic Testing Sector 31
 2.1.1 Current Market Trends and Drivers 31
 2.1.2 Effectiveness of POCT 32
 2.1.3 New Growth Areas for POCT 33
 2.1.4 Advantages of POCT in a Clinical Setting 33
 2.1.5 Pricing and Reimbursement Issues 34
 2.1.6 Key Customer Segments 34
 2.2 Global Point of Care Marketplace 34
 2.3 Shifts from Central Lab Testing to POCT 35
 2.4 Geographical Distribution 36
 2.5 Challenges of POCT 39
 2.6 Key Issues for POCT 39
 2.6.1 Locations of POCT 39
 2.6.2 Milestones in Technology Development 41
 2.6.3 Drive for Decentralization from Lab 41
 2.6.4 Competitive Landscape for POCT 42
 2.7 The Future of POCT 43

3. **Summary Analysis of the Global POCT Market: Value, Growth Rates and Market Share** 45
 3.1 Global POCT Market 45
 3.2 Global Market Revenues Analysis by Market Segment 46
 3.2.1 Global POC Blood Glucose Monitoring Systems Market 46
 3.2.2 Global POC Blood Gas and Electrolyte Analyzers Market 47
 3.2.3 Global POC Rapid Coagulation Analyzers Market 47
 3.2.4 Global POC Cardiac Markers Devices Market 48
 3.2.5 Global POC Substance Abuse Testing Device Market 49
 3.2.6 Global POC Infectious Disease Testing Device Market 49
 3.2.7 Global POC Urine Strip Testing Market 49
 3.2.8 Global POC Pregnancy Testing Device Market 50
 3.2.9 Global POC Fecal Occult Device Market 51
 3.2.10 Global POC Cholesterol Testing Market 51
 3.3 Global Market Share Analysis 52
 3.4 Global Market Size by Geographic Location 52

4. **Analysis of the U.S. POCT Market: Value, Growth Rates and Market Share** 54
 4.1 U.S. Market Revenues Analysis by Market Segment 54
 4.1.1 U.S. POC Blood Glucose Monitoring Systems Market 54
 4.1.2 U.S. POC Blood Gas and Electrolyte Analyzers Market 55
 4.1.3 U.S. POC Rapid Coagulation Analyzers Market 56
 4.1.4 U.S. POC Cardiac Markers Devices Market 56
 4.1.5 U.S. POC Substance Abuse Testing Device Market 57
 4.1.6 U.S. POC Infectious Disease Testing Device Market 57
 4.1.7 U.S. POC Urine Strip Testing Market 58
 4.1.8 U.S. POC Pregnancy Testing Device Market 58
 4.1.9 U.S. POC Fecal Occult Device Market 59
 4.1.10 U.S. POC Cholesterol Testing Market 59

© 2018 Trimark Publications, LLC. All rights reserved 1 www.trimarkpublications.com
4.2 U.S. Market Share Analysis 60
4.3 U.S. Market Size by Analyte Market Segment 61

5. Analysis of the European POCT Market: Value, Growth Rates and Market Shares 62
5.1 European Market Revenues Analysis 68
5.2 European Market Revenues Analysis by Geographic Region 69
5.2.1 French Revenues for POCT Systems 69
5.2.2 German Revenues for POCT Systems 70
5.2.3 Italian Revenues for POCT Systems 70
5.2.4 Spanish Revenues for POCT Systems 71
5.2.5 U.K. Revenues for POCT Systems 71
5.2.6 Benelux Revenues for POCT Systems 72
5.2.7 Scandinavian Revenues for POCT Systems 72
5.2.8 Rest of Europe Revenues for POCT Systems 73
5.3 European Market Revenues Analysis by Market Segment 73
5.3.1 European POC Blood Glucose Monitoring Systems Market 73
5.3.2 European POC Blood Gas and Electrolyte Analyzers Market 74
5.3.3 European POC Rapid Coagulation Analyzers Market 75
5.3.4 European POC Cardiac Markers Market 75
5.3.5 European POC Substance Abuse Testing Device Market 77
5.3.6 European POC Infectious Disease Testing Market 78
5.3.7 European POC Urine Strip Testing Market 78
5.3.8 European POC Pregnancy Testing Device Market 79
5.3.9 European POC Fecal Occult Blood Testing Market 79
5.3.10 European POC Cholesterol Testing Market 80
5.4 European Market Share Analysis 81

6. Analysis of the POCT Markets for Japan, China and India: Value, Growth Rates and Market Share 82
6.1 Summary Analysis of Japanese, Chinese and Indian POCT Market Revenues 82
6.2 Summary of Asian (Japanese, Chinese and Indian) Market Revenues by Market Segment 83
6.2.1 Asian (Japanese, Chinese and Indian) POC Blood Glucose Monitoring Systems Market 83
6.2.2 Asian (Japanese, Chinese and Indian) POC Blood Gas and Electrolyte Analyzers Market 83
6.2.3 Asian (Japanese, Chinese and Indian) POC Rapid Coagulation Analyzers Market 84
6.2.4 Asian (Japanese, Chinese and Indian) POC Cardiac Markers Devices Market 84
6.2.5 Asian (Japanese, Chinese and Indian) POC Substance Abuse Testing Device Market 85
6.2.6 Asian (Japanese, Chinese and Indian) POC Infectious Disease Testing Device Market 85
6.2.7 Asian (Japanese, Chinese and Indian) POC Urine Strip Testing Market 86
6.2.8 Asian (Japanese, Chinese and Indian) POC Pregnancy Testing Device Market 86
6.2.9 Asian (Japanese, Chinese and Indian) POC Fecal Occult Device Market 87
6.2.10 Asian (Japanese, Chinese and Indian) POC Cholesterol Testing Market 87
6.3 Asian (Japanese, Chinese and Indian) Market Share Analysis 88
6.4 Summary Analysis of the Japanese POCT Market 88
6.5 Summary Analysis of the Indian POCT Market 91
6.6 Summary Analysis of the Chinese POCT Market 94

7. Analysis of the Rest of World (ROW) POCT Market: Value, Growth Rates and Market Share 101
7.1 Summary Analysis of the ROW POCT Market Revenues 101
7.2 Summary of the ROW Market Revenues by Market Segment 102
7.2.1 ROW POC Blood Glucose Monitoring Systems Market 102
7.2.2 ROW POC Blood Gas and Electrolyte Analyzers Market 102
7.2.3 ROW POC Rapid Coagulation Analyzers Market 103
7.2.4 ROW POC Cardiac Markers Devices Market 103
7.2.5 ROW POC Substance Abuse Testing Device Market 104
7.2.6 ROW POC Infectious Disease Testing Device Market 105
7.2.7 ROW POC Urine Strip Testing Market 105

© 2018 TriMark Publications, LLC. All rights reserved
7.2.8 ROW POC Pregnancy Testing Device Market 106
7.2.9 ROW POC Fecal Occult Device Market 106
7.2.10 ROW POC Cholesterol Testing Market 107
7.3 ROW Market Share Analysis 107
7.4 Summary Analysis of the ROW POCT Market Revenues 108
7.4.1 Summary Analysis of the Argentinian POCT Market 108
7.4.2 Summary Analysis of the Australian POCT Market 108
7.4.3 Summary Analysis of the Brazilian POCT Market 109
7.4.4 Summary Analysis of the Canadian POCT Market 109
7.4.5 Summary Analysis of the Russian POCT Market 110
7.4.6 Summary Analysis of the Middle East POCT Market 111
7.4.7 Summary Analysis of the African POCT Market 112
7.4.8 Summary Analysis of the Asia-Pacific POCT Market 113
8. Review of the Market Segments, Reagents and Equipment 117
8.1 Blood Glucose Monitoring 117
8.1.1 Introduction to Blood Glucose Monitoring 117
8.1.2 Types of Blood Glucose Testing 118
8.1.2.1 Fasting Blood Sugar (FBS) or Fasting Plasma Glucose (FPG) 118
8.1.2.2 Two-Hour Postprandial Blood Sugar or Two-Hour PC 118
8.1.2.3 Random Blood Sugar (RBS) 118
8.1.2.4 Glucose Urine Test 118
8.1.2.5 Blood Glucose Test Strip 118
8.1.2.6 Glycosylated Hemoglobin (HbA1c) 119
8.1.2.7 Intravenous Glucose Tolerance Test (IV GTT) 119
8.1.2.8 Oral Glucose Tolerance Test (OGTT) 119
8.1.3 Segmentation of POC Blood Glucose Testing 119
8.1.3.1 Continuous Blood Glucose Monitoring (CBGM) 119
8.1.3.2 Self-Monitoring Blood Glucose (SMBG) Testing 121
8.1.3.3 Minimally-Invasive and Non-Invasive Blood Glucose Testing 121
8.1.3.4 Emerging Glucose Monitoring Technologies 122
8.1.3.5 Optical Transducer Technologies 122
8.1.3.6 Transdermal Sensor Technologies 123
8.1.3.7 Invasive Glucose Sensor Technologies 123
8.1.4 Review of Professional POC Blood Glucose Monitoring Systems 124
8.1.4.1 New Guidance: Use of Blood Glucose Monitoring Systems for Professional and Home POC 124
8.1.5 Review of POC Blood Glucose Monitoring Products 125
8.1.5.1 Abaxis, Inc. 127
8.1.5.2 Abbott 127
8.1.5.3 Alere 128
8.1.5.4 Apex Biotechnology 129
8.1.5.5 ARKRAY, Inc. 129
8.1.5.6 EKF Diagnostics 130
8.1.5.7 Fora Care 130
8.1.5.8 HemoCue (part of Radiometer) 130
8.1.5.9 HMD BioMedical 131
8.1.5.10 Jant Pharmacal 131
8.1.5.11 LifeHealth (formerly International Technidyne Corp.) 132
8.1.5.12 Medtronic 132
8.1.5.13 Nova Biomedical 132
8.1.5.14 Polymer Technology Systems 133
8.1.5.15 Roche 133
8.1.5.16 Siemens 134
8.1.6 Professional POC Hemoglobin A1c (HbA1c) Testing 135
8.1.6.1 A. Menarini Diagnostics 135
8.1.6.2 Alere 136
8.1.6.3 Apex Biotechnology 136
8.1.6.4 Convergent Technologies GmbH & Co. 136
8.1.6.5 DiaSys Diagnostic Systems 136
8.1.6.6 Diazyme Laboratories 137
8.1.6.7 EKF Diagnostics 137
8.1.6.8 Erba Mannheim 137
8.1.6.9 Eurolyser 138
8.1.6.10 Green Cross Medis (formerly Ceragem Medisys) 138
8.1.6.11 HemoCue (a division of Radiometer) 138
8.1.6.12 Roche 138
8.1.6.13 SD Biosensor 139
8.1.6.14 Siemens Healthcare Diagnostics 139
8.1.7 Market Analysis 139
8.1.7.1 Worldwide Professional Glucose Testing Market 141
8.1.7.2 U.S. Professional Glucose Testing Market 141
8.1.8 Competitive Analysis for the Glucose POCT Sector 142
8.1.9 Market Share for Glucose Testing 144
8.1.10 Competitive Analysis for the Glucose POCT Sector 144
8.1.11 Market Analysis 145
8.1.11.1 Market Drivers 145
8.1.11.2 Market Restraints 145
8.1.12 POC Glucose Testing Assay Market and Technology Trends 146
8.1.12.1 POC Glucose Testing Assay Market Trends 146
8.1.12.2 POC Glucose Testing Assay Technology Trends 146
8.1.12.3 POC Glucose Testing Assay Strategic Recommendations 146
8.2 Blood Gas and Electrolytes 147
8.2.1 Background to POC Blood Gas and Electrolyte Testing 147
8.2.1.1 Acid-Base Balance and the Lungs 148
8.2.1.2 Respiratory Acidosis 148
8.2.1.3 Respiratory Alkalosis 148
8.2.1.4 Metabolic (or Non-Respiratory) Acidosis 148
8.2.1.5 Metabolic (or Non-Respiratory) Alkalosis 149
8.2.1.6 Increasing Popularity of POC Blood Gas and Electrolyte Testing 149
8.2.2 Market Segmentation (Segmentation by Type of Blood Gas Monitoring Equipment) 149
8.2.2.1 Intermittent Blood Gas Monitoring Equipment 149
8.2.2.2 Continuous Blood Gas Monitoring Equipment 150
8.2.2.3 EABG Monitors 150
8.2.2.4 IABG Monitors 150
8.2.2.5 Portable Blood Gas Analyzers 151
8.2.2.6 Next Generation Blood Gas Analyzers 151
8.2.3 Applications for POCT Blood Gas and Electrolyte Analyzers 151
8.2.4 Emerging Technologies 151
8.2.5 Whole-Blood Lactate 152
8.2.6 Creatinine 152
8.2.7 Electrolytes Point of Care Analysis: Comparison of POCT and Central Lab Results 153
8.2.8 Review of Selected Blood Gas and Electrolyte Analyzers 154
8.2.9 Review of Company Products 156
8.2.9.1 Roche Corporation 156
8.2.9.2 Siemens Healthcare Diagnostics 156
8.2.9.3 Instrumentation Laboratory 157
8.2.9.4 Nova Biomedical 158
8.2.9.5 Radiometer 158
8.2.9.6 Abbott Point of Care 159
8.2.9.7 Accriva Diagnostics 160
8.2.9.8 Alere 160
8.2.9.9 Opti Medica 160

© 2018 TriMark Publications, LLC. All rights reserved 4 www.trimarkpublications.com
8.2.10 Market Share for Blood Gas and Electrolyte Testing 161
8.2.12 Market Analysis 161
8.2.12.1 Market Drivers 161
8.2.12.2 Market Restraints 162
8.2.13 POC Blood Gas and Electrolyte Testing Assay Market and Technology Trends 163
8.2.13.1 POC Blood Gas and Electrolyte Testing Assay Market Trends 163
8.2.13.2 POC Blood Gas and Electrolyte Testing Assay Technology Trends 163
8.2.13.3 POC Blood Gas and Electrolyte Testing Assay Strategic Recommendations 163
8.3 Rapid Coagulation Tests 164
8.3.2 Review of Selected POC Rapid Coagulation Analyzers 171
8.3.3 Review of Company Products 173
8.3.3.1 Roche Diagnostics Corp. 173
8.3.3.2 Abbott Laboratories 174
8.3.3.3 Accriva 175
8.3.3.4 Medtronic 176
8.3.3.5 Alere 176
8.3.3.6 Helena Laboratories Point of Care 177
8.3.3.7 Hemonetics 179
8.3.3.8 Siemens, Inc. 179
8.3.3.9 Instrumentation Laboratory’s GEM PCL Plus 180
8.3.4 Connectivity Issues 181
8.3.6 Quality Control Issues 182
8.3.7 Certification for POC Coagulation Devices 182
8.3.8 D-Dimer Testing 183
8.3.9 Market Analysis 183
8.3.9.1 Market Share for POC Coagulation Testing 183
8.3.9.2 Competitive Analysis of Sector Companies 184
8.3.9.3 Market Drivers 184
8.3.9.4 Market Restraints 185
8.3.9.5 POC Coagulation Testing Assay Market Trends 186
8.3.9.6 POC Coagulation Testing Assay Technology Trends 186
8.3.9.7 POC Coagulation Testing Assay Strategic Recommendations 186
8.3.9.8 SWOT Analysis: Summary of Strengths, Weaknesses, Opportunities and Threats in the Coagulation POC Market 187
8.4 POC Rapid Cardiac Markers 187
8.4.2 Cardiac Marker Tests 189
8.4.2.1 Creatine Kinase (CK) 189
8.4.2.2 Myoglobin 190
8.4.2.3 Cardiac Troponins T (TnT), I (TnI) and C (TnC) 191
8.4.2.4 C-Reactive Protein (CRP) 192
8.4.2.5 Homocysteine 193
8.4.3 Emerging Markers 194
8.4.3.1 B-Type Natriuretic Peptide (BNP) 194
8.4.3.2 Myeloperoxidase (MPO) 195
8.4.3.3 Ischemia-Modified Albumin (IMA) 195
8.4.3.4 Glycogen Phosphorylase Isoenzyme BB (GPBB) 196
8.4.3.5 Fatty Acid-Binding Proteins (FABPs) 196
8.4.4 Review of Selected POC Cardiac Biomarker Analyzers 196
8.4.5 Review of Company Products 198
8.4.5.1 Abbott’s i-STAT System 198
8.4.5.2 Alere’s Triage System 198
8.4.5.3 Alpha Scientific 200
8.4.5.4 Boditech Med’s i-CHROMA D System 200
8.4.5.5 BTNX 200
8.4.5.6 Homemed 201
8.4.5.7 LSI Medience (formerly Mitsubishi Chemical Medience Corp.) 201
8.4.5.8 Nano-Ditech 201
8.4.5.9 Princeton BioM editech 201
8.4.5.10 Radiometer (part of Danaher) 202
8.4.5.11 Response Biomedical Corporation 202
8.4.5.12 Roche Diagnostics 203
8.4.5.13 Siemens Healthcare Diagnostics 204
8.4.5.14 Trinity Biotech 205
8.4.5.15 Trivitron Healthcare (formerly Ani Biotech) 205
8.4.5.16 bioMérieux 205
8.4.6 Market Share and Sales for Cardiac Marker Testing 206
8.4.6.1 Market Drivers 207
8.4.6.2 Market Restraints 208
8.4.7 POC Cardiac Marker Testing Assay Market and Technology Trends 209
8.4.7.1 POC Cardiac Marker Testing Assay Market Trends 209
8.4.7.2 POC Cardiac Marker Testing Assay Technology Trends 210
8.4.7.3 POC Cardiac Marker Testing Assay Strategic Recommendations 210
8.5 POCT Substance Abuse Testing 211
8.5.1 Background to POC Substance Abuse Testing 211
8.5.2 Substance Abuse Test Types 218
8.5.2.1 Urine Substance/Drug Screening 218
8.5.2.2 Hair Tests for Substance Abuse and Screening 218
8.5.2.3 Blood Tests for Substance Abuse and Screening 219
8.5.2.4 Saliva Tests for Substance Abuse and Screening 219
8.5.2.5 Sweat Tests for Substance Abuse and Screening 219
8.5.3 Alcohol Abuse and Screening 219
8.5.4 Saliva Testing 220
8.5.5 Qualitative Analysis 221
8.5.5.1 Market Drivers 221
8.5.5.2 Market Restraints 221
8.5.6 Review of Selected POC Substance Abuse Analyzers 221
8.5.7 Review of Company Products 223
8.5.7.1 Akers Biosciences 223
8.5.7.2 Alere 223
8.5.7.3 BTNX, Inc. 225
8.5.7.4 BioScan Screening Systems, Inc. 226
8.5.7.5 American BioMedica Corp. 226
8.5.7.6 OraSure 228
8.5.7.7 Noble Medical, Inc. 229
8.5.7.8 Pathtech 229
8.5.7.9 Alfa Scientific Designs, Inc. 229
8.5.7.10 Biophor Diagnostics 230
8.5.7.11 Randox Laboratories 231
8.5.7.12 LifeSign 231
8.5.7.13 Princeton BioM editech Corporation (PBM) 231
8.5.7.14 Rapid Test Pty, Ltd. 231
8.5.7.15 Siemens Medical Solutions USA 231
8.6 POC Pregnancy and Fertility Tests 232
8.6.1 Background to POC Pregnancy and Fertility Tests 232
8.6.2 Review of Selected POC Pregnancy Testing Devices 232
8.6.3 Review of Company Products 233
8.6.3.1 Quidel 233
8.6.3.2 Alere 233
8.6.3.3 Sutherland Health Group Ltd. 234
8.6.3.4 Sekisui Diagnostics, LLC 234
8.6.3.5 Siemens Diagnostics 234
8.6.3.6 LifeSign 234
8.6.3.7 Other Companies in this Sector 235
8.6.3.8 Market Analysis 235
8.6.3.8.1 Competitive Sector Analysis 235
8.7 Fecal Occult Blood 236
8.7.1 Background to POC Fecal Occult Blood Testing 236
8.7.2 Review of Selected POC Fecal Occult Testing Devices 238
8.7.3 Review of Company Products 239
8.7.3.1 Helena Laboratories 239
8.7.3.2 Biomerica 240
8.7.3.3 Beckman Coulter 240
8.7.3.4 Worldwide Medical 240
8.7.3.5 Aerscher Diagnostics 240
8.7.3.6 Enterix 241
8.7.3.7 Medix Biochemica 241
8.7.3.8 Orion Diagnostica 241
8.7.3.9 ACON Laboratories' Mission FOB Reagent Strips 241
8.7.3.10 Alere's Products 242
8.7.3.12 Princeton BioMeditex's BioSign iFOBTest 242
8.7.3.13 Quest Diagnostics' InSure FIT 242
8.7.3.14 Quidel's QuickVue iFOB 242
8.7.3.15 Exact Sciences' Cologuard 242
8.7.3.16 Epigenomics 243
8.7.3.17 CTK Biotech 243
8.7.5 Market Analysis 243
8.7.5.1 Market Drivers 244
8.7.5.2 Market Restraints 244
8.7.5.3 POC Fecal Occult Blood Testing Assay Market and Technology Trends 244
8.7.5.3.1 POC Fecal Occult Blood Testing Assay Market Trends 244
8.7.5.3.2 Fecal Occult Blood Testing Assay Technology Trends 244
8.7.5.3.3 POC Fecal Occult Blood Testing Assay Strategic Recommendations 244
8.8 POC Infectious Disease Testing 245
8.8.1 Background to POC Infectious Disease Testing 245
8.8.2 Types of Diagnosis for Infectious Diseases 246
8.8.2.1 Microbial Culture 246
8.8.2.2 Microscopy 246
8.8.2.3 Biochemical Tests 247
8.8.2.4 Immunologic Tests 247
8.8.2.5 Molecular Diagnostics Testing 247
8.8.3 Diagnostic Platforms for Infectious Diseases 248
8.8.3.1 Centralized Laboratory Testing for Infectious Diseases 248
8.8.3.2 POC Testing for Infectious Diseases 248
8.8.4 Emerging Technologies 249
8.8.5 Market Analysis 249
8.8.5.1 Market Drivers 249
8.8.5.2 Market Restraints 249
8.8.6 Review of Selected POC Infectious Disease Testing Devices 250
8.8.6.1 POC Infectious Disease Testing Devices and Assays in Development 253
8.8.6.1.1 Cepheid's GeneXpert Omni 253
8.8.6.1.2 Alere q 253
8.8.6.1.3 Roche's cobas Liat System 253
8.8.6.1.4 QuantuMDx's Q-POC 253
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.8.6.1</td>
<td>SRI International</td>
<td>254</td>
</tr>
<tr>
<td>8.8.6.1</td>
<td>Atlas Genetics’ io System</td>
<td>254</td>
</tr>
<tr>
<td>8.8.7</td>
<td>Overview of POC Assays for Detection of Infectious Disease</td>
<td>254</td>
</tr>
<tr>
<td>8.8.7.1</td>
<td>Anthrax and Other Bio-Threats</td>
<td>254</td>
</tr>
<tr>
<td>8.8.7.2</td>
<td>Campylobacter</td>
<td>257</td>
</tr>
<tr>
<td>8.8.7.3</td>
<td>Clostridium difficile</td>
<td>257</td>
</tr>
<tr>
<td>8.8.7.4</td>
<td>E. coli</td>
<td>259</td>
</tr>
<tr>
<td>8.8.7.5</td>
<td>Gastrointestinal Infectious Agents</td>
<td>259</td>
</tr>
<tr>
<td>8.8.7.5.1</td>
<td>Giardia and Cryptosporidium</td>
<td>260</td>
</tr>
<tr>
<td>8.8.7.5.2</td>
<td>Entamoeba histolytica</td>
<td>260</td>
</tr>
<tr>
<td>8.8.7.5.3</td>
<td>Rotavirus & Adenovirus</td>
<td>261</td>
</tr>
<tr>
<td>8.8.7.5.4</td>
<td>Norovirus</td>
<td>261</td>
</tr>
<tr>
<td>8.8.7.6</td>
<td>Hepatitis</td>
<td>262</td>
</tr>
<tr>
<td>8.8.7.7</td>
<td>Herpes Simplex Virus Type-2</td>
<td>264</td>
</tr>
<tr>
<td>8.8.7.8</td>
<td>Influenza</td>
<td>264</td>
</tr>
<tr>
<td>8.8.7.9</td>
<td>Legionella</td>
<td>269</td>
</tr>
<tr>
<td>8.8.7.10</td>
<td>Malaria Testing</td>
<td>270</td>
</tr>
<tr>
<td>8.8.7.11</td>
<td>Meningitis</td>
<td>272</td>
</tr>
<tr>
<td>8.8.7.12</td>
<td>Mononucleosis</td>
<td>273</td>
</tr>
<tr>
<td>8.8.7.13</td>
<td>Procalcitonin (Detects Sepsis)</td>
<td>274</td>
</tr>
<tr>
<td>8.8.7.14</td>
<td>Respiratory Tract Infections</td>
<td>275</td>
</tr>
<tr>
<td>8.8.7.14.1</td>
<td>C-Reactive Proteins</td>
<td>275</td>
</tr>
<tr>
<td>8.8.7.14.2</td>
<td>Pneumonia</td>
<td>275</td>
</tr>
<tr>
<td>8.8.7.14.3</td>
<td>Respiratory Tract Panels</td>
<td>276</td>
</tr>
<tr>
<td>8.8.7.15</td>
<td>RSV</td>
<td>277</td>
</tr>
<tr>
<td>8.8.7.16</td>
<td>Rubella</td>
<td>279</td>
</tr>
<tr>
<td>8.8.7.17</td>
<td>Sexually-Transmitted Diseases</td>
<td>279</td>
</tr>
<tr>
<td>8.8.7.17.1</td>
<td>Chlamydia</td>
<td>279</td>
</tr>
<tr>
<td>8.8.7.17.2</td>
<td>Gonorrhea Testing</td>
<td>280</td>
</tr>
<tr>
<td>8.8.7.17.3</td>
<td>Syphilis</td>
<td>280</td>
</tr>
<tr>
<td>8.8.7.18</td>
<td>Staphylococcus aureus and MRSA</td>
<td>282</td>
</tr>
<tr>
<td>8.8.7.19</td>
<td>Streptococcus A Testing</td>
<td>282</td>
</tr>
<tr>
<td>8.8.7.20</td>
<td>Tropical Diseases</td>
<td>285</td>
</tr>
<tr>
<td>8.8.7.20.1</td>
<td>Chagas Disease</td>
<td>285</td>
</tr>
<tr>
<td>8.8.7.20.2</td>
<td>Dengue Fever</td>
<td>286</td>
</tr>
<tr>
<td>8.8.7.20.3</td>
<td>Ebola</td>
<td>287</td>
</tr>
<tr>
<td>8.8.7.20.4</td>
<td>Filariasis</td>
<td>287</td>
</tr>
<tr>
<td>8.8.7.20.5</td>
<td>Onchocerciasis</td>
<td>287</td>
</tr>
<tr>
<td>8.8.7.20.6</td>
<td>Zika Virus</td>
<td>287</td>
</tr>
<tr>
<td>8.8.7.21</td>
<td>Tuberculosis</td>
<td>287</td>
</tr>
<tr>
<td>8.8.7.22</td>
<td>Typhoid</td>
<td>289</td>
</tr>
<tr>
<td>8.9</td>
<td>POC Urine Strip Testing</td>
<td>289</td>
</tr>
<tr>
<td>8.9.1</td>
<td>Background to POC Urine Strip Testing</td>
<td>289</td>
</tr>
<tr>
<td>8.9.2</td>
<td>Emerging Technologies</td>
<td>291</td>
</tr>
<tr>
<td>8.9.3</td>
<td>Review of Selected POC Urine Strip Testing Devices</td>
<td>292</td>
</tr>
<tr>
<td>8.10</td>
<td>POC Cholesterol Testing</td>
<td>294</td>
</tr>
<tr>
<td>8.10.1</td>
<td>POC Cholesterol Testing Market Size and Development</td>
<td>294</td>
</tr>
<tr>
<td>8.10.2</td>
<td>Background to POC Cholesterol Testing</td>
<td>294</td>
</tr>
<tr>
<td>8.10.3</td>
<td>POC Cholesterol Testing Devices</td>
<td>296</td>
</tr>
<tr>
<td>8.10.3.1</td>
<td>Review of Selected POC Cholesterol Testing Devices</td>
<td>296</td>
</tr>
<tr>
<td>8.10.4</td>
<td>Review of Company Products</td>
<td>297</td>
</tr>
<tr>
<td>8.10.4.1</td>
<td>Cholestech (Now Alere)</td>
<td>297</td>
</tr>
<tr>
<td>8.10.4.2</td>
<td>Polymer Technology Systems</td>
<td>297</td>
</tr>
<tr>
<td>8.10.4.3</td>
<td>Miraculins</td>
<td>297</td>
</tr>
<tr>
<td>8.10.4.4</td>
<td>Abaxis, Inc.</td>
<td>298</td>
</tr>
<tr>
<td>8.10.5</td>
<td>Product Comparison of Leading Suppliers</td>
<td>298</td>
</tr>
</tbody>
</table>
8.10.6 Launch Dates of Leading Products Worldwide 300
8.11 Miscellaneous POC Tests 301
8.11.1 Estriol 301
8.11.2 POC H. pylori Testing 301
8.11.3 Bacterial Contamination of Platelet Units 304
8.11.4 POC Vaginal Fluid pH and Vaginitis Testing 304
8.11.5 POC Cancer Testing 305
8.11.5.1 Prostate-Specific Antigen (PSA) 305
8.11.5.2 Bladder Cancer 306
8.11.5.3 Other Rapid Cancer Tests 308
8.11.6 Hemodynamic Monitoring 308
8.11.7 Heparin-Induced Thrombocytopenia (HIT) 309
8.11.8 Ruptured Fetal Membranes 310
8.11.9 Microalbumin Testing 310
8.11.10 Prenatal, Labor and Delivery Testing 310
8.11.10.1 Medix Biochemica 311
8.11.11 Respiratory Tests 311
8.12 HIV 314
8.12.1 Rapid HIV Assays 319
8.12.1.1 Alere 320
8.12.1.2 bioMérieux Laboratories, Inc. 321
8.12.1.3 Bio-Rad Laboratories 321
8.12.1.4 Chembio Diagnostics 322
8.12.1.5 MedMira Laboratories, Inc. 322
8.12.1.6 OraSure Technologies 323
8.12.1.7 Trinity Biotech 323
8.12.2 Rapid HIV Assays Not Approved by the FDA (not commercially available in the U.S.) 324
8.12.2.1 Alere 324
8.12.2.2 bioMérieux 324
8.12.2.3 Bio-Rad 325
8.12.2.4 Core Diagnostics 325
8.12.2.5 CTK Biotech 325
8.12.2.6 EY Laboratories 325
8.12.2.7 Hema Diagnostics Systems 326
8.12.2.8 ImmunoScience 326
8.12.2.9 InTec Products 326
8.12.2.10 JAL Innovation 327
8.12.2.11 J Mitra & Co. 327
8.12.2.12 Premier Medical Corporation 327
8.12.2.13 Princeton BioMeditech 328
8.12.2.14 Savyon Diagnostics 328
8.12.2.15 Tulip Group 328
8.12.3 POC Viral Load Technologies of the Future 328
8.12.3.1 Cepheid 328
8.12.3.2 Roche 329
8.12.3.3 Wave 80 Biosciences 329

9. POCT: Growth Regulators 330
9.1 Modulators of Growth 330
9.2 Personnel Acceptance 330
9.3 Key People for POCT 331
9.4 Information Management Issues 331
9.4.1 Elements of Information Management for POCT: Information-Processing Capabilities 331
9.4.2 Data Mining 332
9.4.3 Middleware 332
9.4.4 Web Portals 333
9.4.5 POCT-1A Standard 333
9.5 Key Elements for POCT 334
9.6 POCT and Reimbursement 334
9.7 Effectiveness of Clinical Outcomes 336
9.8 Rapid Near-Patient Testing in Hospitals 336
9.9 Satellite Facilities 336
9.10 Regionalization of Laboratory Care 337
9.11 Requirements for POCT 338
9.12 Locations of POC for Patient Care 339
9.13 Benefits of POCT 340
9.14 Cost Elements of POCT 340
9.15 Necessary Functions in POCT 340
9.16 Turnaround Time (TAT) for POCT 340
9.17 Clinical Laboratory Improvement Amendments (CLIA) 341
9.18 Sexually-Transmitted Diseases in Underdeveloped Countries 342
9.19 Sources of Error in POC Testing 342

10. Business Trends in the POC Sector 344
10.1 Sector Consolidation 344
10.2 Diagnostic Testing Growth Trends 345
10.2.1 Opportunities for Healthcare Stakeholders 346
10.3 Acquisition, License Agreements, Internal Development and Partnerships 346
10.4 Product Testing Depth in POCT 350
10.5 Government Regulation 350
10.5.1 U.S. Regulation 350
10.5.1.1 Importing Medical Devices into the U.S. 352
10.5.1.2 Exporting Medical Devices from the U.S. 353
10.5.2 E.U. Regulation 353
10.5.3 Japanese Regulation 356
10.6 Post-Filing Regulations for POC Devices 358
10.7 Exporting Unapproved POCs 359
10.8 Analyte-Specific Reagents (“Home-Brew” Tests) 359
10.9 Medical Device Registration 359
10.10 Product Labeling 360
10.11 Punitive FDA Actions 360
10.12 CLIA ‘88 and State Laboratory Laws 360
10.13 Impact of Regulations on the Industry 361
10.14 Minimizing Regulatory Barriers 362
10.15 Waived Testing 364

11. Technology Platform Innovations in POCT 366
11.1 Latest POC Technological Platforms 366
11.1.1 Device Miniaturization and Microfluidic Technologies 366
11.1.2 Minimally-Invasive and Non-Invasive POCT Technologies 366
11.1.2.1 Libre Flash Glucose Monitor and OneTouch Verio Sync Meter 367
11.1.2.2 Echo Therapeutics 367
11.1.3 Advances in Wireless Technologies 367
11.1.4 Automation of POCT 367
11.1.5 Developments in New Genomic Technologies (Genotyping, Haplotyping and Sequencing Technologies) 368
11.1.6 Advances in Informatics Technologies 370
11.1.7 Pharmacogenetic Testing 371
11.1.8 Multi-Assay Technologies in POCT 371
11.1.9 Molecular Diagnostic Technology in POCT for Infectious Disease 371
11.2 Smart Phone Technology 372
11.2.1 Aquila Diagnostic Systems, Inc. 372
11.2.2 AgaMatrix 373
11.2.3 Quick HIV and Syphilis Screening 373
11.2.4 Accu-Check Connect System 373
11.3 QuantuMDx Handheld, Portable Low Cost Rapid Devices 374

12. Data Management and Connectivity 375
12.1 Wireless LANs 375
12.2 Connectivity Platforms 377
12.2.1 Data Management Systems 378
12.2.1.1 Alere RALS System 379
12.2.1.2 International Technidyne Corporation HEMOCHRON Signature Elite 380
12.2.1.3 Siemens Diagnostics Rapidpoint 380
12.2.1.4 Radiometer 380
12.2.1.5 HemoCue’s DM Hemoglobin 380
12.2.1.6 Roche Diagnostics Cobas IT 380
12.2.1.7 Accriva 381
12.2.2 BD.id 381
12.2.3 Medical Implant Communications Service (MICS) 381
12.2.4 Conworx Technology 381
12.2.5 Telcor QML 382
12.2.6 Medasys 382
12.2.7 NoemaLife 382
12.2.8 Telcare 382
12.3 Advantages of POCT Connectivity 382
12.3.1 Cost-Benefit Analysis of POCT and IT Connectivity 383
12.3.2 Hospital Network Issues 383

13. Corporate Profiles 385
13.1 Abaxis, Inc. 385
13.2 Abbott Laboratories 386
13.3 AccuBioTech Co., Ltd. 387
13.4 Accriva Diagnostics 387
13.5 ACON Laboratories, Inc. 388
13.6 Acrongenomics 388
13.7 AgaMatrix 389
13.8 Aerscher Diagnostics, LLC 389
13.9 Akers Biosciences, Inc. 389
13.10 Alere 390
13.11 Alfa Scientific Designs, Inc. 393
13.12 American Bio Medica Corporation 393
13.13 Arkray, Inc. 394
13.14 Atlas Genetics Ltd. 394
13.15 Atonomics A/S 395
13.16 Augurix Diagnostics Ltd. 395
13.17 Axxin 395
13.18 Beckman Coulter (Danaher Corporation) 395
13.19 biolYtical Laboratories 396
13.20 Biomerica, Inc. 397
13.21 bioMérieux 397
13.22 Bio-Rad Laboratories, Inc. 397
13.23 BioScan Screening Systems, Inc. 398
13.24 Calypte Biomedical Corporation 398
13.25 Chembio Diagnostic, Inc. 398
13.26 ERBA Diagnostics, Inc. 399
13.27 Daktari Diagnostics 399
13.28 Dexcom 400
13.29 Diagnostics for All 401
13.30 Enigma Diagnostics Ltd. 402
13.31 EY Laboratoires, Inc. 402
13.32 Eurotrol 402
13.33 Exalenz Bioscience 403
13.34 GenBio 403
13.35 Guided Therapeutics, Inc. 403
13.36 Helena Laboratories 404
13.37 Hema Diagnostic Systems, LLC 404
13.38 Instrumentation Laboratory (IL)/Werfen Group 405
13.39 Jant Pharmacal Corporation 405
13.40 LifeSign, LLC 405
13.41 Medix Biochemica 406
13.42 MedMira Laboratories 406
13.43 A. Menarini Diagnostics 406
13.44 Micronics 406
13.45 New Horizons Diagnostics 407
13.46 Nova Biomedical 407
13.47 OraSure Technologies, Inc. 408
13.48 Orion Diagnostica 409
13.49 Polymedco, Inc. 409
13.50 Polymer Technology Systems, Inc. 410
13.51 Qualigen 410
13.52 Quest Diagnostics, Inc. 410
13.53 Quidel Corporation 410
13.54 Radiometer Medical 411
13.55 Response Biomedical Corp. 411
13.56 Roche Diagnostics 411
13.57 Savyon Diagnostics 412
13.58 Seegene 413
13.59 Sekisui Diagnostics, LLC 413
13.60 Shanghai Ruicare Medical Co., Ltd. 413
13.61 Shenzhen Fitconn Technology Co., Ltd. 413
13.62 Shionogi & Co., Ltd. 414
13.63 Siemens AG 414
13.64 Siloam Biosciences, Inc. 414
13.65 Spectral Medical, Inc. 415
13.66 StatSure Diagnostic Systems, Inc. 415
13.67 One Step Detect Associates, LLC 415
13.68 Senseonics 416
13.69 Trinity Biotech Plc 416

14. POCT Sector Trends and Forecasts 417
14.1 Home Care Analysis as Part of Near-Patient Testing 417
14.2 Non-Traditional Collection for POCT 417
14.3 New Systems for Critical Care and Near-Patient Testing 418
14.4 Utility of Near-Patient Testing in Critical-Care Settings 418
14.5 Physician's Office Market 419
14.6 Information Management Advances 419
14.7 Test-Ordering Patterns and Demand for POCT 419
14.8 Demand for Emergency Department Services 420
14.9 Move Away from the Central Laboratory 421
14.10 Healthcare Cost Controls 422
14.11 Competition for Services 422
14.12 Drivers of POCT 423
14.13 Confluence of New Technology 423
INDEX OF FIGURES

Figure 2.1: Worldwide Distribution of IVD Testing, 2016 37
Figure 2.2: Top 13 Country IVD Testing Markets, 2016 38
Figure 2.3: Market Share for IVD Testing by Company, 2016 39
Figure 3.1: Total Global POCT Market, 2008-2021 46
Figure 3.2: Worldwide Distribution of POCT, 2016 53
Figure 4.1: U.S. Revenues for POCT Market, 2008-2021 54
Figure 4.2: Summary of U.S. POCT Markets by Market Segment, 2016 61
Figure 5.1: European Revenues for POCT Market, 2008-2021 69
Figure 6.1: Summary Analysis of Japanese, Chinese and Indian POCT Market, 2008-2018 82
Figure 6.2: Japanese Revenues for POCT Market, 2008-2018 90
Figure 6.3: Indian Revenues for POCT Market, 2008-2018 94
Figure 6.4: Chinese Revenues for POCT Market, 2008-2018 96
Figure 7.1: Summary Analysis of ROW POCT Market, 2008-2021 101
Figure 7.2: Summary Analysis of Russian Revenues for POCT Products Market, 2008-2018 111
Figure 7.3: Summary Analysis of Middle East Revenues for POCT Products Market, 2008-2018 112
Figure 7.4: Summary Analysis of African Revenues for POCT Products Market, 2008-2018 113
Figure 7.5: Summary Analysis of Latin America Revenues for POCT Products Market, 2008-2018 116
Figure 8.1: Global Share of Glucose Testing Market by Company, 2016 144
Figure 8.2: Global POCT Share of Blood Gas and Electrolyte Testing Market, 2017 161
Figure 8.3: Global POCT Share of Coagulation Testing Market, 2016 183
Figure 8.4: Global POCT Share of Cardiac Marker Testing Market, 2016 206
Figure 8.5: Distribution of Infectious Diseases Tested at the Point of Care 250
INDEX OF TABLES

Table 2.1: Summary of Global Professional POCT Markets by Major Market Sub-Segment, 2016 and 2021 26
Table 2.2: Summary of U.S. Professional POCT Markets by Major Market Sub-Segment, 2016 and 2021 26
Table 2.3: Summary of European Professional POCT Markets by Major Market Sub-Segment, 2016 and 2021 27
Table 2.4: Summary of Asian Professional POCT Markets by Major Market Sub-Segment, 2016 and 2021 28
Table 2.5: Summary of ROW Professional POCT Markets by Major Market Sub-Segment, 2016 and 2021 29
Table 2.6: Worldwide Distribution of IVD Testing, 2016 36
Table 2.7: Top 13 Country IVD Testing Markets, 2016 37
Table 2.8: Company Market Share for IVD Testing Markets, 2016 38
Table 2.9: Competitive Landscape for POC Diagnostic Testing 42
Table 3.1: Total Global POCT Market, 2008-2021 46
Table 3.2: Global Revenues for POC Blood Glucose Monitoring Systems, 2014-2021 47
Table 3.3: Global Revenues for POC Blood Gas and Electrolyte Analyzers, 2014-2021 47
Table 3.4: Global Revenues for POC Rapid Coagulation Analyzer Systems, 2014-2021 48
Table 3.5: Global Revenues for POC Cardiac Marker Devices, 2014-2021 48
Table 3.6: Global Revenues for POC Substance/Drug Abuse Testing Device Market, 2014-2021 49
Table 3.7: Global Revenues for POC Infectious Disease Testing Devices Market, 2014-2021 49
Table 3.8: Global Revenues for POC Urine Strip Testing Products Market, 2014-2021 50
Table 3.9: Global Revenues for POC Pregnancy Testing Devices Market, 2016-2021 50
Table 3.10: Global Revenues for POC Fecal Occult Testing Devices Market, 2014-2021 51
Table 3.11: Global Revenues for POC Cholesterol Testing Products Market, 2014-2021 51
Table 3.12: Global POCT Market Share Analysis, 2016 52
Table 3.13: Worldwide POCT Market Size by Geographic Location, 2008-2021 52
Table 3.14: Worldwide Distribution of Professionally Administered POCT, 2016 53
Table 4.1: U.S. Revenues for POCT Market, 2015-2021 54
Table 4.3: U.S. Revenues for POC Blood Gas and Electrolyte Analyzers, 2014-2021 55
Table 4.4: U.S. Revenues for POC Rapid Coagulation Analyzer Systems, 2014-2021 56
Table 4.5: U.S. Revenues for POC Cardiac Marker Devices, 2014-2021 56
Table 4.6: U.S. Revenues for POC Substance/Drug Abuse Testing Device Market, 2014-2021 57
Table 4.7: U.S. Revenues for POC Infectious Disease Testing Devices Market, 2014-2021 57
Table 4.8: U.S. Revenues for POC Urine Strip Testing Products Market, 2014-2021 58
Table 4.10: U.S. Revenues for POC Fecal Occult Testing Devices Market, 2014-2021 59
Table 4.11: U.S. Revenues for POC Cholesterol Testing Products Market, 2014-2021 59
Table 4.12: U.S. Revenues for POC Cardiac Marker Devices, 2014-2021 60
Table 4.13: U.S. POCT Market Share Analysis, 2016 60
Table 4.14: Summary of U.S. POCT Markets by Market Segment, 2016 61
Table 5.1: Models of Public-Private Partnership in Hospital Provision 65
Table 5.2: European Revenues for POCT Market, 2014-2021 68
Table 5.3: French Revenues for POCT Systems, 2008-2018 69
Table 5.4: German Revenues for POCT Systems, 2008-2018 70
Table 5.5: Italian Revenues for POCT Systems, 2008-2018 70
<p>| Table 7.9: Summary Analysis of ROW Revenues for POC Pregnancy Testing Devices Market, 2008-2021 | 106 |
| Table 7.10: Summary Analysis of ROW Revenues for POC Fecal Occult Testing Devices Market, 2008-2021 | 106 |
| Table 7.11: Summary Analysis of ROW Revenues for POC Cholesterol Testing Products Market, 2008-2021 | 107 |
| Table 7.12: Summary Analysis of ROW Market Shares, 2016 | 107 |
| Table 7.13: Summary Analysis of Argentinian Revenues for POCT Products Market, 2008-2018 | 108 |
| Table 7.14: Summary Analysis of Australian Revenues for POCT Products Market, 2008-2018 | 108 |
| Table 7.15: Summary Analysis of Brazilian Revenues for POCT Products Market, 2008-2018 | 109 |
| Table 7.16: Summary Analysis of Canadian Revenues for POCT Products Market, 2008-2018 | 110 |
| Table 7.17: Summary Analysis of Russian Revenues for POCT Products Market, 2008-2018 | 110 |
| Table 7.18: Summary Analysis of Middle East Revenues for POCT Products Market, 2008-2018 | 111 |
| Table 7.19: Summary Analysis of African Revenues for POCT Products Market, 2008-2018 | 112 |
| Table 7.20: Summary Analysis of Asia (Other) Revenues for POCT Products Market, 2008-2018 | 113 |
| Table 7.21: Summary Analysis of Latin America (Other) Revenues for POCT Products Market, 2008-2018 | 116 |
| Table 8.1: Selected POC Blood Glucose Meters Marketed for Professional Use, 2017 | 126 |
| Table 8.2: POC HbA1c Testing Devices and Assays on the Market, 2017 | 135 |
| Table 8.3: Global Revenues for Total Professional Blood Glucose Monitoring (Central Laboratory Testing and Hospital POC and POL), 2013-2019 | 141 |
| Table 8.4: SWOT Analysis: Summary of Strengths, Weaknesses, Opportunities and Threats of the Glucose Point of Care Market | 142 |
| Table 8.5: Global Share of Glucose Testing Market by Company, 2016 | 144 |
| Table 8.6: Selected POC Blood Gas and Electrolyte Analyzers, 2017 | 155 |
| Table 8.7: Market Share of Blood Gas and Electrolyte POCT Diagnostic Testing Companies Worldwide, 2016 | 161 |
| Table 8.8: SWOT Analysis: Summary of Strengths, Weaknesses, Opportunities and Threats in the Blood Gas and Electrolyte POCT Market | 164 |
| Table 8.9: Hospital Locations of Point of Care Coagulation Testing | 166 |
| Table 8.10: Selected POC Rapid Coagulation Analyzers, 2017 | 172 |
| Table 8.11: Connectivity Modes for Leading Coagulation POCT Analyzers | 181 |
| Table 8.12: Market Share for Coagulation POCT Diagnostic Testing Companies, 2016 | 183 |
| Table 8.13: Drivers for Point of Care Coagulation Testing | 185 |
| Table 8.14: Barriers for Point of Care Coagulation Testing | 186 |
| Table 8.15: SWOT Analysis: Summary of Strengths, Weaknesses, Opportunities and Threats in the Coagulation POC Market | 187 |
| Table 8.16: Selected POC Cardiac Biomarker Tests, 2017 | 197 |
| Table 8.17: Market Share of Cardiac Marker POCT Diagnostic Testing Companies Worldwide, 2016 | 206 |
| Table 8.18: POC Cardiac Marker Testing Market: Market Drivers Ranked in Order of Impact | 208 |
| Table 8.19: POC Cardiac Marker Testing Market: Market Restraints Ranked in Order of Impact | 209 |
| Table 8.20: SWOT Analysis: Summary of Strengths, Weaknesses, Opportunities and Threats in the Cardiac Marker POC Market | 211 |
| Table 8.21: Drug Testing Needs Tier I for Rapid Serum POCT in the Emergency Department | 217 |
| Table 8.22: Stat Urine Testing Drug Recommendations | 217 |
| Table 8.23: Selected POC Substance/Drug Abuse Testing Devices, 2017 | 222 |
| Table 8.24: Selected POC Pregnancy Testing Devices, 2017 | 233 |
| Table 8.25: Selected POC Fecal Occult Testing Devices, 2017 | 238 |
| Table 8.26: ColoCARE Fecal Occult Blood Test | 239 |
| Table 8.27: SWOT Analysis: Summary of Strengths, Weaknesses, Opportunities and Threats in the Fecal Occult Blood POC Market | 245 |
| Table 8.28: Selected POC Infectious Disease Testing Devices and Assays, 2017 | 251 |
| Table 8.29: Influenza Diagnostic Rapid Tests | 265 |
| Table 8.30: Selected POC Urine Strip Testing, 2017 | 292 |
| Table 8.31: Selected POC Cholesterol Testing Devices, 2017 | 296 |
| Table 8.32: AmniSure | 310 |</p>
<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 8.33</td>
<td>Competitive Factors Related to HIV Tests</td>
</tr>
<tr>
<td>Table 8.34</td>
<td>Global POCT Market for Rapid HIV Testing, 2011-2021</td>
</tr>
<tr>
<td>Table 8.35</td>
<td>Global POCT Share of HIV Testing Market, 2016</td>
</tr>
<tr>
<td>Table 8.36</td>
<td>Rapid HIV Immunoassay Tests, 2017</td>
</tr>
<tr>
<td>Table 9.1</td>
<td>POCT-Compliant Connectivity POC Instruments</td>
</tr>
<tr>
<td>Table 9.2</td>
<td>POCT Clinical Outcomes in Diabetic Ketoacidosis</td>
</tr>
<tr>
<td>Table 9.3</td>
<td>POCT in Three Hospitals—Cost Analysis with Labor Included</td>
</tr>
<tr>
<td>Table 9.4</td>
<td>POCT versus Central Lab—Cost Analysis for Glucose Testing</td>
</tr>
<tr>
<td>Table 11.1</td>
<td>Common Genotype Techniques</td>
</tr>
<tr>
<td>Table 12.1</td>
<td>Applications for Wireless LAN Technology</td>
</tr>
<tr>
<td>Table 12.2</td>
<td>Customized Reports Must Support CAP and JCAHO Requirements</td>
</tr>
<tr>
<td>Table 14.1</td>
<td>Test Menu and TAT for ED</td>
</tr>
<tr>
<td>Table 14.2</td>
<td>Top Reasons Why POC Cardiac Marker Testing is Implemented in the ED</td>
</tr>
<tr>
<td>Table 14.3</td>
<td>Key Areas and Metrics that Hospitals Measure to Assess Efficiency of ED</td>
</tr>
</tbody>
</table>
1. Overview

Point of care testing (POCT) enables rapid diagnostic tests to be performed while the patient is at the point of care (POC) facility where results can be obtained immediately rather than waiting hours or even days for outside lab results to arrive. POCT covers: blood glucose testing, blood gas and electrolytes analysis, rapid coagulation testing, rapid cardiac markers diagnostics, drugs of abuse screening, urine strips testing, pregnancy testing, fecal occult blood analysis, hemoglobin diagnostics, infectious disease testing and cholesterol screening. This TriMark Publications report describes the professional POC testing segment of the diagnostic market (as opposed to at-home testing and other venues that are not in the hands of healthcare professionals).

The two most important areas where such tests are measured for immediate results in a POC setting are hospital emergency rooms and critical-care clinics. The third place where these tests are frequently measured in what is characterized as a near-patient setting is in physician’s office labs (POLs). Other testing areas of interest for these analytes are satellite labs, critical-care units, neonatal intensive-care units (NICUs), intensive-care units (ICUs) and home testing locations. Home testing is not covered in this report.

This report also examines the subsections of each POC market segment, including: glucose, blood gases, coagulation, cardiac markers, drugs of abuse, infectious disease and many others. Additionally, rapid detection of infectious pathogens (methicillin-resistant Staphylococcus aureus [MRSA], herpes simplex, avian flu, West Nile virus [WNV] and typhoid) is discussed.

This examination of POCT focuses on the POC segments in important worldwide markets, such as the U.S., Japanese, European, Asian and Rest-of-the-World (ROW) markets. An extensive review of POCT in this report includes the market for diagnostic equipment and supplies as well as the market for screening reagents and instruments for analysis of individual components in blood, serum, urine and other body fluids. This report defines the dollar volume of sales, for both worldwide and U.S. markets, and it analyzes the factors that influence the size and the growth of the individual market segments. The market estimates have been factored to reflect the professional healthcare use, which is of most interest to diagnostic companies.

Most of the companies known to be developing instruments and reagents for the clinical POC market are examined in this study. Each company is discussed in depth with a section on the history of the company, the product line, a business and marketing analysis and a subjective commentary of the position of the company in its market.

1.1 About This Report

A review of analytes that are related to the chemical and cellular constituents of blood, plasma or serum at the point of care of the patient is addressed in this study. The two most important areas where such tests are measured are in the hospital and the clinic environments (the emergency department and the critical-care section). A nother important place where these tests are measured is in POLs. Newer testing areas of interest for these analytes are satellite labs, corporate facilities, law enforcement agencies and home testing locations. This report’s emphasis is on companies that are actively developing and marketing clinical laboratory instrumentation, reagents and supplies for performing clinical diagnostic tests in the near-patient environment. The main objectives of this analysis are:

- For the general point of care testing market:
 - The size of the market and distribution between different market segments.
 - The expected growth over the next five years within each market segment.
 - A comprehensive overview of the main POCT players. What kind of instruments do they have and what is range of analysis?
 - Which analysis in POCT is expected to experience exceptional growth going forward?
 - Identifying viable technology drivers through a comprehensive look at platform technologies for POCT.
 - Understanding the different sectors of POCT, looking at the hospital market segment and, separately, at a description of the instruments, reagents and supplies marketed by major companies in each segment.
 - Obtaining a complete understanding of the individual POC tests, from their basic principles to their clinical applications.
• Discovering feasible market opportunities by identifying high-growth applications in different analytical
diagnostic areas, emphasizing the biggest and expanding markets.
• Focusing on global industry development through an in-depth analysis of the major world markets for POC
technology, including growth forecasts.
• Presenting POCT market figures regarding the market’s current value, market projections, market share,
key players and sector growth rates. This information is the most currently available data derived from the
global diagnostic industry.

This study contains:

• A detailed analysis of recent trends in the professional POC marketplace.
• In-depth profiles of the leading companies with POC tools and technologies.
• A forecast for the professional POC market and diagnostic segments thereof.
• Views and predictions on the POC industry from leading industry experts.
• An analysis of potential new POC applications in the clinical sector.
• Market predictions and trends analysis concerning U.S. expenditures on POC solutions.
• Projections of POC market sizes for European and Asian markets.
• Projections for future applications of molecular diagnostic tests in POC-related screening.
• Analysis of commercial POC business strategies.
• The latest news and mergers and acquisitions (M & A s) developments in the POC marketplace.
• A comprehensive overview of and insight into POC business strategies.
• An in-depth examination of the subsections of each market segment, including the POLs and clinic testing.

Analysis includes charts and graphs measuring product growth and trends within the marketplace. Company-specific
information, including sales figures, product pipeline status and research and development (R&D) trends, is
provided. This review will also:

• Assess POC market drivers and bottlenecks from medical and scientific community perspectives.
• Discuss the potential benefits of POC for various sectors of the medical and scientific community.
• Establish the current total market size and future growth of the POC market and analyze the current size
and growth of individual segments.
• Provide current and forecasted market shares by company.
• Discuss profit and business opportunities by segment.
• Provide strategic recommendations for near-term business opportunities.
• Assess current commercial uses of the POC market.

The following questions will also be addressed in this analysis:

• What are the near-term business opportunities in the POCT market?
• What are the current and forecasted POCT market sizes in the U.S., the European Union (E.U.), Japan and
other key country markets?
• What are the business models currently used by companies in the POCT market?
• How will stakeholders like manufacturers, regulators, physicians and patients influence this market?
• What are the drivers and restraints influencing the POCT market?
• What are the important technologies used in POCT?
• Who holds the proprietary rights to the POCT market technology platforms?
• In the U.S., Japan and the E.U., what regulatory processes apply to POCT technologies?
• How will new POCT technologies change diagnostic screening testing paradigms?
• How will new POC technologies reduce healthcare expenditures and affect R & D spending?
• What are the newest instruments introduced into the professional POC market.
The report contains:

- A comprehensive overview of the several categories of POC technology platforms that are or will be revolutionizing the use of diagnostic tests in hospitals.
- A chapter on each of the important POC categories and applications (glucose, cardiac markers, HIV, respiratory diseases, and more...).
- Full descriptions of the technologies involved and how they differ from existing and emerging technologies.
- Analysis of the technological approaches undertaken by various competitors, as well as industry and end-user responses to these products.
- Regulatory issues and legislation affecting the use and marketing of POC products.
- Market forecasts for each category of product, including profiles of selected competitors.

1.2 Scope of the Report

The POCT diagnostic product markets in the U.S., Japan and Europe—the world’s three largest analytical markets—are the focus of this study. A analysis of the diagnostic and POC activity of a number of other smaller country markets is also included. Primary attention is paid to the clinical market segment and, separately, to the instruments, reagents and supplies marketed by major companies in this segment. Market size, growth rates and market components for instruments, reagents, controls and consumables used in this area are also analyzed. In general, the non-professional (home care) market for self-testing is considered an entirely different market from professional (hospitals, clinics and doctor’s offices) testing and is not considered in this report in any detailed way. Other related areas, e.g., infant jaundice evaluation, anthrax detection, homeland defense testing, bovine spongiform encephalopathy (BSE, i.e., Mad Cow Disease), tuberculosis and food pathogens, are also discussed.

This report focuses on the “point of care” market. In this context, this phrase means “professional” testing, which extends beyond the hospital ER to doctor’s offices and other medical facilities where trained personnel perform the tests. In the context of this report, and by general agreement within the diagnostics sector, this will exclude so called “home testing”. Over 90% of this type of testing is used for glucose measurements. More information on self-testing markets is available in a TriMark report entitled World Glucose Self-Testing Markets.

The reader should consult other TriMark Publications reports at www.trimarkpublications.com for detailed discussions of important individual market segments related to the POCT market such as POC Diagnostic Sector Testing Trends, Blood Glucose Testing and Diabetes Management, and Women’s Health Diagnostic Testing.

1.3 Objectives

The key objective of this study is to conduct a comprehensive review of the POCT market with particular emphasis on emerging trends in equipment and supplies using screening reagents and instruments for analysis of individual components in tissue samples, blood, serum or plasma. Also examined are the sub-segments of each market segment, including physician’s office labs, specialty labs (e.g., NICUs) and critical-care laboratories. In addition, this report reviews a number of institutions using these forms of POCT and includes a discussion of the factors that influence their purchasing decisions. The report surveys almost all of the companies known to be marketing, manufacturing or developing instruments and reagents for the POC market.

1.4 Methodology

The author of this report holds a Ph.D. in biochemistry from the University of Minnesota and has had post-doctoral experience at the University of Connecticut School of Medicine. He has taught at Quinnipiac University and the Tufts School of Medicine and has been a senior scientist at Pfizer Pharmaceutical Laboratories in drug development. He also has many decades of experience in science writing and as a medical industry analyst. He has over 30 years of experience in laboratory testing and instrument and reagent development technology as a licensed clinical laboratory director, as well as extensive experience in senior-level management positions in biotech and medical service companies.
Company-specific information is obtained mainly from industry trade publications, academic journals, news and research articles, press releases and corporate websites as well as from annual reports for publicly-held firms. Additional sources of information include non-governmental organizations (NGOs) such as the World Health Organization (WHO) and governmental entities such as the U.S. Department of Health and Human Services (HHS), the National Institutes of Health (NIH), the U.S. Food and Drug Administration (FDA) and the Centers for Disease Control and Prevention (CDC). Where possible and practicable, the most recent data available have been used.

Some of the statistical information was taken from Biotechnology Associates’ databases and from TriMark’s private data stores. The information in this study was obtained from sources that we believe to be reliable, but we do not guarantee the accuracy, adequacy or completeness of any information or omission or the results obtained from the use of such information. Key information from the business literature was used as a basis to conduct dialogue with and obtain expert opinion from market professionals regarding commercial potential and market sizes. Senior managers from major company players were interviewed for part of the information in this report.

Primary Sources

TriMark collects information from hundreds of Database Tables and many comprehensive multi-client research projects, as well as from Sector Snapshots that it publishes annually. TriMark extracts relevant data and analytics from its research as part of this data collection.

Secondary Sources

TriMark uses research publications, journals, magazines, newspapers, newsletters, industry reports, investment research reports, trade and industry association reports, government-affiliated trade releases and other published information as part of its secondary research materials. The information is then analyzed and translated by the Industry Research Group into a TriMark study. The Editorial Group reviews the complete package with product and market forecasts, critical industry trends, threats and opportunities, competitive strategies and market share determinations.

TriMark Publications Report Research and Data Acquisition Structure

The general sequence of research and analysis activity prior to the publication of every report includes the following items:

- Completing an extensive secondary research effort on an important market sector, including gathering all relevant information from corporate reporting, publicly-available databases, proprietary databases, direct meetings and personal interviews with key personnel.
- Formulating a study outline with the assigned writer, including the following:
 - Market and product segment grouping and evaluating their relative significance.
 - Key competitors’ evaluations, including their relative positions in the business and other relevant facts to prioritize diligence levels and assist in designing a primary research strategy.
 - End-user research to evaluate analytical significance in market estimation.
 - Supply chain research and analysis to identify any factors affecting the market.
 - New technology platforms and cutting-edge applications.
- Identifying the key technology and market trends that drive or affect these markets. Assessing the regional significance for each product and market segment for proper emphasis of further regional/national primary and secondary research.
- Launching a combination of primary research activities, including two levels of questionnaires and executive-direct focused, company-specific and region-specific communications to qualified and experienced senior executives worldwide.
• Completing a confirmatory primary research assessment of the report’s findings with the assistance of Expert Panel Partners from the industry being analyzed.

The information is then analyzed and translated by the Industry Research Group into a TriMark study. The Editorial Group reviews the complete package with product and market forecasts, critical industry trends, threats and opportunities, competitive strategies and market share determinations.

Finally, before publication, each market report is reviewed by a fact checker, and editor and a proof reader. The final copy is ultimately released by the Editor-in-Chief and management.

1.5 Executive Summary

The professional POCT market sub-segment was valued at $[x] billion in [year]. It is estimated that the global POCT market will exhibit a compound annual growth rate (CAGR) of [x]% between [years] to $[y] billion. The report provides a summary of the global professional POCT market divided into individual major market sub-segments, with market values for [x] and market projections to [y]. With any growth rate estimate, glucose testing remains the leading point of care testing global segment, accounting for [x]% of global near patient testing by [year]. Excluding glucose testing, only rapid cardiac markers rises to >$[z] billion in POC testing by [year], accounting for an estimated [x]% of total testing by [year].

Despite budget pressures on hospitals, point of care testing will continue to grow at a rate larger than central lab testing, powered by continuing trends for adoption and use of these platforms across disciplines, notably cardiac markers, coagulation and infectious disease. As such, several diagnostic companies have scheduled advanced multiplexing platforms in their development pipelines, including a broad range of immunoassays and molecular tests.

The U.S. is recognized as the largest single country market for POCT products by [year]. In [year], the U.S. POCT market was valued at $[x] billion. TriMark estimated that the U.S. POCT market would exhibit a CAGR of [x]% between [years] and [y] to $[z] billion. In the U.S. market, glucose testing remains the leading point of care testing segment used by hospital professionals, accounting for [x]% of near patient testing by [year], decreasing to [y]% in [year]. Excluding glucose testing, no rapid testing segments rise to the $[x] billion level in U.S. POP testing by [year]. Glucose testing is still king. U.S. Point of Care testing by professionals for infectious diseases is projected to grow at [x]% over the forecast period, accounting for an estimated [y]% of total testing by [year] compared with its [x]% share of U.S. testing in [year]. Infectious disease testing at POCT will emerge as the third largest segment by [year], surpassing the blood gas & electrolytes sector. Infectious disease testing is rising fast.

TriMark has determined that Europe represents the largest regional market for POCT products in [year], but falls to second place versus the U.S. in [year]. In [year], the European POCT market was valued at $[x] billion. TriMark estimated that the European POCT market would exhibit a CAGR of [x]% between [years] and [y] to $[z] billion. Germany is widely recognized as the largest single market for both IVD and POCT products within Europe. The German POCT market in [year] was valued at $[x] billion. The hospital and healthcare services structure in Germany makes it particularly suitable for the use of POCT products, leading to the higher percentage of POCT products as part of the IVD market.

In the European professional POCT market, glucose testing remains the leading point of care testing segment, accounting for [x]% of near patient testing by [year], decreasing to [y]% in [year]. Excluding glucose testing, no rapid testing segments rise to the $[x] billion level in Europe. Glucose testing is still king, even in Europe. In fact, this dominance for glucose testing is predominantly the result of weaker sales in all other segments of POCT, unlike the U.S. market where several segments are projected to grow by double digits (cardiac markers & infectious disease).

European Point of Care testing by professionals for infectious diseases is projected to grow at [x]% over the forecast period; accounting for an estimated [y]% of total testing by [year]. Infectious disease testing at POCT will emerge as the second largest segment in the European market by [year].
Asia (which includes Japan, China and India for the purposes of this report) represents a major market, but there are significant differences in growth rates for each of the individual countries. The POCT segment represented an estimated 19.5% of the Asian IVD market in 2016. In 2016, the POCT market for Japan, China and India (referred to as the Asian POCT market in this report) was $2.49 billion. TriMark estimated that the Asian POCT market would exhibit a CAGR of 6% between 2016 and 2021.

The Japanese POCT market has slowed recently and is expected to see a CAGR of 4%; it is estimated to have been valued at $1.44 billion in 2016. In contrast, the emerging markets of India and China are exhibiting higher CAGRs of 19% and 18%, respectively, between 2012 and 2018, and are valued at $340.7 million and $706.8 million in 2016, respectively.

The report also provides a summary of the Asian POCT market segmented by individual major market sub-segment with market values for 2016 and market projections to 2021.

Although the ROW segment represents the geographic region with the smallest revenue, it is nevertheless a moderate growth opportunity (CAGR 3%), and includes the emerging markets of Brazil and Russia. Included in this regional analysis are the Middle East, Africa, other Asian countries, Australia, Canada and other Latin American countries such as Mexico and Argentina.

As a result of the analysis carried out during the preparation of this report, TriMark has concluded that the professional handled POCT market for the ROW was valued at $834 million in 2016. It is predicted that the market for professional POCT products in the ROW will be valued at $988 million by 2021 (a CAGR of 3% between 2016 and 2021). The underlying market fundamentals remain strong given the rising number of people with diabetes globally, especially in Asia and the ROW.

Roche, Alere [to be possibly acquired by Abbott] and Abbott Laboratories are the three largest suppliers of POCT devices throughout the world and collectively comprise an estimated 49.6% of the global market. Although other companies, such as Nova, are becoming increasingly focused on POCT, increasing their product expansion and collaboration efforts to gain market share, the market remains extremely fragmented. Alere has sought to improve its market position through its acquisitions of companies like Biosite, Axis-Shield and its collaborations with SureStat and Chembio. Alere’s HIV market share, on the other hand, could erode with the entry of Roche and Orasure and the advent of oral HIV tests. Nova Biomedical is becoming a reliable player with its new POCT platform. POCT dynamics are changing rapidly, and smaller players are poised to deliver value with their innovative platforms and growing test menus. The market has been driven by a transition to fully-automated systems, real-time amplification, connectivity platforms and growing test development for POC platforms.

TriMark estimates that future growth will stem from emerging applications like genotyping for identifying drug-resistant strains; bioterrorism; testing applications within infectious disease like Influenza and HIV; and disease diagnostics and prognostic assays for disease applications like sepsis, cardiovascular disease (CHF) and coagulation testing. The industry consolidation is significant, as larger players like Abbott, with the acquisition of Alere, want to move into faster-growing markets to expand their product offerings and/or geographical reach. Larger, established diagnostic players like Roche are eager to build out and extend their molecular diagnostic franchises for point of care technology and are willing to pay premium prices for good technology.

Market growth will be paced by substantial gains in the cardiac markers market (primarily beta-natriuretic-peptide (BNP) testing), coagulation, infectious disease testing and continued moderate growth in the clinical chemistry sub-segment—the largest in the POCT market. The later constellation of routine tests, now dominated by central lab testing (ALT, AST, BUN, creatinine, etc.), will eventually migrate completely to near patient testing.

- The value of the global professional POC blood glucose analysis systems market in 2016 was $5.8 billion. By the end of the forecast period in 2021, it is predicted that this market will have increased in value to $6.7 billion (with an average CAGR of 7% from 2016 to 2021). Industry experts expect that the U.S. and Europe POC blood glucose testing market revenues will continue to be negatively impacted by pricing pressure and weak volume growth. In addition, the U.S. market may be affected by a proposed tightening of performance standards to address the limitations of some current blood glucose meters. However, the
underlying market fundamentals remain strong given the rising number of people with diabetes globally, especially in Asia and the ROW.

- The value of the global POC blood gas and electrolyte analysis systems market in 2016 was $1.27 billion. By the end of the forecast period in 2021, it is predicted that this market will have increased in value to $1.76 billion with an average CAGR of 7% from 2016 to 2021.

- The value of the global POC rapid coagulation analyzers systems market increased to an estimated $858 million by 2016. By the end of the forecast period in 2021, it is predicted that the market will have increased in value to $1.26 billion with an average CAGR of 8% from 2016 to 2021.

- The value of the global POC cardiac marker analysis device market increased to an estimated $2.26 billion by 2016. By the end of the forecast period in 2021, it is predicted that the market will have increased in value to $3.0 billion with an average CAGR of 6% from 2016 to 2021.

- The value of the global POC substance/drug abuse testing devices market increased to an estimated $686 million by 2016. By the end of the forecast period in 2021, it is predicted that the market will have increased in value to $868 million with an average CAGR of 5% from 2016 to 2021.

- The global POC infectious disease testing devices market increased to an estimated $1.09 billion by 2016. By the end of the forecast period in 2021, it is predicted that the market will have increased in value to $1.9 billion (with an average CAGR of 12% from 2016 to 2021).

- The value of the global POC urine strip testing products market increased to an estimated $402 million by 2016. By the end of the forecast period in 2021, it is predicted that the market will have increased in value to $450 million (with an average CAGR of 2% from 2016 to 2021).

- The value of the global POC pregnancy testing devices market increased to an estimated $467 million by 2016. By the end of the forecast period in 2021, it is predicted that the market will have increased in value to $541 million (with an average CAGR of 3% from 2016 to 2021).

- The value of the global POC fecal occult products market increased to an estimated $450 million by 2016. By the end of the forecast period in 2021, it is predicted that the market will have increased in value to $547 million (with an average CAGR of 4% from 2016 to 2021).

- The value of the global POC cholesterol testing products market increased to an estimated $750 million by 2016. By the end of the forecast period in 2021, it is predicted that the market will have increased in value to $850 million (with an average CAGR of 3% from 2016 to 2021).

- The value of the global POC HIV testing products market increased to an estimated $250 million by 2016. By the end of the forecast period in 2021, it is predicted that the market will have increased in value to $345 million (with an average CAGR of 5% from 2016 to 2021).