MICROARRAY MARKETS
(SAMPLE COPY, NOT FOR RESALE)

Trends, Industry Participants, Product Overviews and Market Drivers
# TABLE OF CONTENTS

1. **Overview** 7

   1.1 Statement of Report 7

   1.2 Scope of the Report 9

   1.3 Objectives 9

   1.4 Methodology 10

   1.5 Executive Summary 11

2. **The Commercial Opportunity for Microarrays** 15

   2.1 Markets Served by Microarray Technologies 15

      2.1.1 Basic Research Markets 15

      2.1.2 Translational Medicine Markets 16

      2.1.3 Molecular Diagnostic Markets 16

      2.1.4 Specialized/Applied Markets 19

   2.2 Microarray Market Analysis 19

   2.3 Market Drivers 21

   2.4 Market Restraints for Microarrays 23

   2.5 Key Players and Market Share for Major Players 24

   2.6 Strategic Trends and Competitive Landscape for Microarrays 27

   2.7 Marketing and Distribution 28

3. **Microarray Overview** 30

   3.1 History of Microarrays 30

   3.2 Genomics and Proteomics 30

      3.2.1 Genetic Variability and Disease 33

   3.3 General Theory of Microarrays 33

      3.3.1 DNA Microarrays 35

      3.4 Protein Microarrays 38

      3.5 Tissue Microarrays 39

      3.6 Low Complexity Microarrays 41

   3.7 Carbohydrate Microarrays 42

4. **DNA Microarrays** 45

   4.1 DNA Microarray Technology Platforms 45

      4.1.1 Microarray Technology 46

      4.1.2 DNA Microarrays—Experimental Design 46

   4.2 Types of Microarrays and Their Applications 47

      4.2.1 Common Microarray Applications 49

   4.3 Reasons Why Researchers Utilize DNA Microarrays 51

   4.4 Factors for Difficulties Applying DNA Microarray Technology 51

   4.5 Key Attributes of DNA Microarray Software 52

   4.6 Microarray Technology in Treating Disease 53

      4.6.1 High-Throughput Array Technology and Cancer 54

      4.6.2 Microarray-Based Commercial Genotyping Activity 57

   4.7 Commercialization of DNA Microarrays 57

   4.8 Future Directions for DNA Microarray Technology 58

      4.8.1 Microarrays vs. Next-Generation Sequencing 59

   4.9 Emerging Microarray Trends 59

   4.10 Emerging Microarray Applications 60

   4.11 Key Points for Developing Microarray-Based Applications 60

   4.12 Competitive Landscape for DNA Microarrays 61

5. **Protein Microarrays** 62

   5.1 Types of Protein Microarrays 62

      5.1.1 Forward Phase Microarrays 62
5.1.2 Reverse Phase Microarrays 63
5.1.3 Peptoid Arrays 63
5.1.4 Nucleic Acid Programmable Protein Arrays (NAPPA) 65
5.1.5 Antibody Microarrays 65
5.1.6 Classifying Protein Microarrays Based on Application 66
5.2 Critical Factors for Microarray Content 67
5.3 Key Findings on the Use of Microarrays 68
5.4 Advantages and Drivers 68
5.5 Limitations and Barriers to Commercialization 70
5.6 Key Experimental Parameters of Protein Microarray Technology 73
5.7 Reasons Why Researchers Utilize Protein Microarrays 74
5.8 Factors for Adoption of Protein Microarray Technology 74
5.9 Top Suppliers of Protein Microarray Slides and Products 75
5.10 Factors that Influence Sale Decisions 75
5.11 Future Innovations in Protein Microarray Technology 76
5.12 Protein Arrays Market Analysis 76

6. Current DNA Microarrays 80
6.1 Key Players 80
6.2 High Growth Applications 81
6.2.1 Microarray-Based Commercial Genotyping Activity 81
6.2.2 Location Analysis 82
6.2.3 Tiling Arrays 84
6.2.4 Epigenetic Mapping Arrays 84
6.3 Innovations in DNA Microarray Technology 86
6.4 Will Next-Generation Sequencing Replace DNA Microarray Technology? 87

7. Current Protein Microarrays 90
7.1 Protein Profiling Microarrays—Antibody Arrays 91
7.2 Protein Profiling Microarrays—Reverse Phase Microarrays 93
7.3 Multiplex Sandwich Microarrays—Planar 94
7.4 Multiplex Sandwich Immunoassays—Bead Based 97
7.5 Microarrays for Protein Function Studies 99
7.6 Specialized and High Growth Applications 101
7.6.1 Cytokine Arrays 101
7.6.2 Whole Proteome Arrays 102
7.7 Aptamer Arrays 103
7.8 Cell-Free Arrays 103
7.9 Protein Nanoarrays 105

8. Technology 106
8.1 Production of Microarrays 106
8.2 2D versus 3D Technology 109
8.3 Substrates and Surface Chemistries 110
8.4 Next-Generation Microarrays 112
8.5 Detection Methods 113
8.6 Instruments 113
8.7 Data Management and Informatics in Gene Expression 115
8.8 Software and Data Analysis 115
8.8.1 Supplier of DNA Microarray Analysis Software 115
8.8.2 Satisfaction with Software Features 115
8.8.3 Satisfaction with Software 115
8.8.4 Supplier Factors in Software Purchase Decision 116
8.8.5 Suppliers’ Role in Improving Data Sharing for DNA Microarrays 116

9. Lab-on-a-Chip Technologies 117
9.1 Introduction to Lab-on-a-Chip 117
9.2 Lab-on-a-Chip Technology 118
9.3 Applications for Lab-on-a-Chip Technology 120
9.4 The Advantages of Lab-on-a-Chip Technology 125
9.5 Barriers to Widespread Adoption 125
9.6 Patent Portfolios 125
9.7 Trends and Outlook for Lab-on-a-Chip Technology 126
9.8 Key Players in Lab-on-a-Chip Industry 126
9.9 Lab-on-a-Chip Market Analysis 128

10. Applications 130
10.1 DNA Microarrays in Gene Expression 130
10.2 DNA Microarrays in SNP Analysis 132
10.3 DNA Microarrays in Cancer 133
10.3.1 Cancer and Fusion Genes 136
10.4 Protein Microarrays 136
10.4.1 Cytokine Applications 136
10.4.2 Protein Function 137
10.4.3 Protein Microarrays in Personalized Medicine 137
10.4.4 Protein-Protein Interactions 138
10.5 Target/Biomarker Discovery 138
10.6 Drug Discovery and Development (Gene and Protein Microarrays) 140
10.7 Clinical Diagnostics (Gene and Protein Microarrays) 140
10.8 RNA Microarrays 142
10.9 Oligo Microarrays 142
10.10 Yeast Microarrays 143
10.11 Antibody Arrays 143
10.12 Arrays for Toxicogenomics 143
10.13 Microbial Applications 144
10.14 The Market for Microbial Genotyping Products 145

11. Competitive Landscape 147
11.1 The Commercial Microarray Market 147
11.2 Sector Consolidation 149
11.3 Regulatory Matters 150
11.4 Legal Matters 151
11.5 Intellectual Property 151
11.6 Mergers, Acquisitions and Agreements 153

12. Company Profiles 155
12.1 Affymetrix 155
12.2 Agilent Technologies, Inc. 157
12.3 Arrayit Corporation 158
12.4 Applied Microarrays 159
12.5 AutoGenomics, Inc. 159
12.6 AyoxxA 160
12.7 BioCat GmbH 160
12.8 BioChain, Inc. 161
12.9 BioForce Nanosciences, Inc. 161
12.10 BioGenex 161
12.11 Biomedical Diagnostics (BMD) 162
12.12 Biolog, Inc. 162
12.13 bioMérieux SA 163
12.14 Biometrix Technology, Inc. 163
12.15 Bio-Rad Laboratories 163
12.16 Cancer Genetics, Inc. 165
12.17 Cepheid, Inc. 165
12.18 Clontech Laboratories, Inc. 165
12.19 CombiMatrix Corporation 165
12.20 CYBRDI 166
12.21 DiagnoSwiss SA 166
12.22 Discerna 166
12.23 EMD Millipore 166
12.24 Eurogentec 167
12.25 Exiqon 167
12.26 Fluidigm Corporation 168
12.27 Gamida for Life Group 170
12.28 GE Healthcare 170
12.29 G-Grace Bio-Labs 172
12.30 Greiner Bio-One 172
12.31 Healthcare IT, Inc. 173
12.32 Great Basin Corporation 173
12.33 Gyros AB 174
12.34 Illumina, Inc. 174
12.35 Imgenex Corp. 176
12.36 Immucor 176
12.37 InDevR 177
12.38 Isu Abxis Co., Ltd. 177
12.39 LC Sciences 177
12.40 Life Technologies/Applied Biosystems (AB) Invitrogen 178
12.41 Lineagen, Inc. 181
12.42 Luminesc Corporation 181
12.43 Maine Manufacturing, LLC 183
12.44 Meso Scale Discovery 183
12.45 Microarrays, Inc. 184
12.46 MiroBio 185
12.47 Mingyuan Medicare Development Company Limited 185
12.48 MiraiBio 186
12.49 Molecular Devices, LLC 186
12.50 Monogram Biosciences 186
12.51 Myriad Genetics, Inc. 187
12.52 NextGen Sciences PLC 188
12.53 One Lambda 188
12.54 OriGene Technologies 188
12.55 Orla Protein Technologies 189
12.56 Oxford Nanopore Technologies Ltd. 189
12.57 Oxford Gene Technology 189
12.58 PamGene BV 190
12.59 Partek, Inc. 190
12.60 Pepscan 190
12.61 Perkin Elmer, Inc. 191
12.62 Phalanx Biotech Group 192
12.63 PharmaSeq 193
12.64 Platypus Technologies, LLC 193
12.65 Protagen AG 194
12.66 ProteoGenix 194
12.67 ProteinOne, Inc. 194
12.68 QIAGEN 195
12.69 Radix BioSolutions 196
12.70 Randox Laboratories Ltd. 196
12.71 R&D Systems 196
12.72 RayBiotech 197
INDEX OF FIGURES

Figure 2.1: Life Sciences Tools Markets, by Sector Served, 2012 15
Figure 2.2: Market Share within the Genetic Tools Market, 2012 18
Figure 2.3: Microarray Market Share, by Product Type 20
Figure 2.4: Global Market Share for Microarray Markets; by Region 21
Figure 3.1: Typical Two-Channel DNA Microarray Experiment 37
Figure 4.1: Segment of Double-Stranded DNA Showing the Base-Pair Relationship 46
Figure 5.1: Peptoid Arrays as Platforms for Biomarker Discovery 64
Figure 6.1: ChIP-on-Chip Experiment 83
Figure 6.2: The Choice between NGS and Microarrays; Rating by Application 88
Figure 7.1: Biomarker Discovery and Validation 90
Figure 7.2: Antibody Microarrays—Sandwich Detection Methods 95
Figure 7.3: Cytokines and Growth Factors: Sources of Microarrays for Cytokine Research 102
Figure 8.1: Sources of Variation in Microarray Data 114
Figure 9.1: A Visual Representation of Lab-on-a-Chip and Related Technologies 118
Figure 9.2: Unit Components Making up the Lab-on-a-Chip (LOAC) System 119
Figure 9.3: Market Share of Biochips Products by Type, 2013 129
Figure 10.1: Toxicogenomics: DNA Microarrays 144
Figure 10.2: Microbial Genotyping: Applications for DNA Microarrays 146
Figure 11.1: Microarray Patents by Region, up to 2013 151
Figure 11.2: Microarray Patents by Year, up to 2013 152

INDEX OF TABLES

Table 2.1: Key Assay Technologies for Molecular Diagnostics 16
Table 2.2: Summary of Molecular Diagnostics Testing Sectors 17
Table 2.3: Global Market for Molecular Diagnostics Testing, 2008-2018 17
Table 2.4: Global Microarray Market, 2010-2018 19
Table 2.5: Global Market size for DNA Microarrays, 2010-2018 20
Table 2.6: Microarray Market Drivers 22
Table 2.7: Leading Microarray Companies 25
Table 2.8: Microarray Market Leaders 26
Table 4.1: List of DNA Array Manufacturers 45
Table 4.2: Steps in the Design and Implementation of a DNA Microarray Experiment 47
Table 4.3: Microarray Applications 50
Table 4.4: DNA Microarray Applications 51
Table 4.5: List of Open Source and Commercially Available Software for Microarray Analysis 52
Table 4.6: Microarray Genetic Testing 57
Table 4.7: Microarray Market Barriers 58
Table 5.1: List of Commercial Antibody Microarrays 66
Table 5.2: Commercially Available Protein Arrays 67
Table 5.3: Critical Factors for Microarray Content 67
Table 5.4: Top Suppliers of Treated Protein Microarray Surfaces for Self-Printing 75
Table 5.5: Top Suppliers of Commercially Available Protein Microarrays 75
Table 5.6: Top Suppliers of Protein Microarray Platforms 75
Table 5.7: Global Market for Protein Microarrays, 2010-2018 77
Table 6.1: Types of DNA Microarrays 85
Table 7.1: Companies Offering Cytokine Microarrays 102
Table 8.1: Comparison of Microarray Platforms 109
Table 8.2: Microarray Instruments Offered by Affymetrix 114
Table 9.1: Categories of Biochips 117
Table 9.2: Applications of Lab-on-a-Chip Technology in Industry 121
Table 9.3: Lab-on-a-Chip Diagnostics 123
Table 9.4: Lab-on-a-Chip Patents, by Region, 2013 126
Table 9.5: List of Companies with Biochip Programs 127
Table 9.6: Global Market Size for Lab-on-a-Chip, 2009-2018 129
Table 10.1: HTS Microarray Market Size Projections, 2010-2017 132
Table 10.2: Protein Microarrays in Personalized Medicine 138
Table 11.1: Main Competitors in the Microarray Market, 2013 148
Table 11.2: Microarray Patents for Selected Companies, up to 2013 152
1. Overview

1.1 Statement of Report

Microarray technologies multiplex and miniaturize the analysis of tens of thousands of molecules (e.g., DNA, protein, etc.) for a variety of assays including drug binding, molecular interactions, enzyme activity, and pathway identification. A microarray can contain tens of thousands of probes bound to a solid surface, which can be glass, silicon chip or microscopic bead. Microarray printing technology can deposit any kind of molecule onto a microarray, including DNA, proteins, antibodies, carbohydrates, tissue sections, cells, as well as various diagnostic elements and other compounds. Microarrays are excellent tools for gene expression profiling, biomarker profiling, and diagnostics. Pharmaceutical and biotechnology researchers use microarrays to streamline drug target identification, selection, validation and predictive testing. Rapid growth in the clinical research and diagnostic devices markets holds great potential for applications of microarray technology ranging from basic research to clinical trials and, ultimately, diagnostic devices.

An emerging technology that is accelerating growth in the microarray markets is the Lab-on-a-Chip, which encompasses an entire biochemical assay, in a miniaturized format, on a self-contained device. The ability to merge microarrays and Lab-on-a-Chip technologies is leading to the development of point of care devices with unmatched capabilities in terms of specificity, efficiency and portability. This report covers emerging microarray technologies with the highest potential for growth over the next five years; new technology platforms enable the production and analysis of a wide variety of microarrays including tissue, genome, proteome, or glycoproteome microarrays. Promising technological advancements in microfluidics and other emerging technologies are discussed, as are important drivers of growth, such as genomic and proteomic research initiatives, including emerging trends in diagnostics and drug discovery.

The purpose of this report is to describe the specific segment of the microarray market aimed at the analysis of proteins and DNA. It examines various microarray platforms and the technologies that are utilized in hospitals, clinics, commercial laboratories and research institutions to detect DNA and proteins for the purpose of drug discovery, diagnosis and the monitoring of disease. Those companies that are actively developing and marketing microarray instrumentation or microarray biochips for performing DNA and protein array tests are emphasized. The main objectives of this analysis are as follows:

- Identifying viable technology drivers through a comprehensive look at platform technologies for DNA and protein arrays, including probe-based nucleic acid assays, microarrays and sequencing.
- Obtaining a complete understanding of the primary DNA and protein array tests from their basic principles to their applications.
- Discovering feasible market opportunities by identifying high-growth applications in different analytical diagnostic areas, focusing on the biggest and expanding markets.
- Focusing on global industry development through an in-depth analysis of the major world markets for DNA and protein array technology, including growth forecasts.
- Presenting market figures regarding the current value of the microarray market, projections and growth rates. The source of this information is the most current data derived from the global diagnostic industry.

By purchasing this report, the reader will have:

- An understanding of the most exciting microarray market segments, current and future.
- The latest information on leading products and research and development (R&D) initiatives.
- Familiarity with recent developments and their effects on selected markets.
- Knowledge of the microarray market as an area of growth, research and investment.

Key questions answered in this study:

- How can microarray tools and technologies facilitate drug discovery, design and development?
- What are the main types of array technologies that are currently available?
- Who are the current key players in this marketplace?
• Which microarray market areas have the greatest potential for growth?
• What is the current state of the microarray market?
• Which biotechnology and pharmaceutical companies are investing in microarray solutions?
• What are the main microarray business strategies adopted by leading companies?
• What are the benefits of microarray technology platforms?

This report contains:

• Detailed analysis of recent trends in the microarray marketplace.
• In-depth profiles of the leading companies with microarray tools and technologies.
• Views and principles on the microarray industry from leading industry experts.
• Analysis of potential microarray applications in the life science sector.
• Market predictions and trends analysis concerning expenditure on array solutions.
• Projections for future applications of microarrays in drug discovery, from the industry’s R&D perspective.
• Analysis of commercial microarray business strategies.
• The latest news and developments in the microarray marketplace.
• A comprehensive overview and insight into microarray business strategies.

Analysis includes charts and graphs measuring product growth and trends within the marketplace. Company-specific information, including sales figures, product pipeline status and R&D trends, is provided. This review will also:

• Assess microarray market drivers and bottlenecks from medical and scientific community perspectives.
• Discuss the potential benefits of microarray for various sectors of the medical and scientific community.
• Establish the current total market size and future growth of the microarray market and analyze the current size and growth of individual segments.
• Provide current and forecasted market shares by segment.
• Discuss profit and business opportunities by segment.
• Provide strategic recommendations for near-term business opportunities.
• Assess current commercial uses of the microarray market.

The following questions are also addressed in this report:

• What are the near-term business opportunities in the microarray market?
• What are the current and forecasted microarray market sizes?
• What are the business models currently used by companies in the microarray market?
• How will manufacturers, researchers, physicians and patients influence this market?
• What are the drivers and bottlenecks influencing the microarray market?
• What are the technologies used in microarray?
• Who holds the proprietary rights to the microarray market technology platforms?
• How is this technology currently being applied and utilized?
• What regulatory processes apply to microarray technologies?
• What are the emerging technologies, trends, and drivers in the current microarray arena?
• How will new microarray technologies change drug development paradigms?
• How will microarray technologies reduce adverse clinical reactions and decrease costs of patient care?
• How will microarray technologies reduce healthcare expenditures?
• How will microarray technologies decrease R&D costs?
• How will microarray technologies grow and adapt to the markets vis-à-vis competing technologies such as Next-Generation Sequencing?
The study contains:

- A comprehensive overview of the several categories of microarray technology platforms that are, or will be, revolutionizing the treatment of diseases.
- A chapter on each of the important microarray categories and applications.
- Full descriptions of the technologies involved and how these differ from existing and emerging technologies.
- Analysis of the technological approaches undertaken by various competitors, as well as industry and end-user response to these products.
- Regulatory issues and legislation affecting use and marketing of microarray products.

1.2 Scope of the Report

Companies that are actively developing and marketing laboratory instrumentation, reagents and supplies for performing DNA and protein array tests are emphasized in this report. The reader should consult other TriMark Publications reports at http://www.trimarkpublications.com for detailed discussions of important individual market segments related to the protein analysis market, such as clinical chemistry testing, high-growth diagnostic test markets, blood gas and electrolytes, over-the-counter diagnostic testing markets, and point of care testing. TriMark provides a separate market report called *DNA Sequencing and PCR Markets*, which emphasizes the analytical methods and PCR technology platforms used in clinical diagnostics.

Special attention is paid to the research market segment and, separately, to the instruments, reagents and supplies marketed by major companies in this segment. Market size, growth rates and market components for instruments, reagents, controls and consumables used in this area are also analyzed.

This report’s scope includes emerging microarray technologies with the highest potential for growth over the next five years. Promising technological advancements including microfluidics and nanotechnology are discussed, as are important drivers of growth, such as genomic and proteomic research initiatives, cancer diagnostic and treatment trends, and drug discovery and development needs.

Specialty array testing is examined because it is often part of the overall analytical focus of companies that market general laboratory automation equipment. However, no effort is made to quantify this broader market. In addition, this report does not cover disposable plastic supplies for the laboratory. These subjects are discussed in other TriMark Publications reports. An analysis of business trends, technology trends, and developing areas of DNA and protein array testing is provided, along with a review of the market for protein array testing equipment and supplies in the clinical and research market segments, using screening reagents and instruments for analysis of individual components in blood, serum or plasma.

The U.S. and global market dollar sales volume and factors that influence the size and growth of market segments are defined. Activity and trends in research markets, including the numbers of institutions that use protein array testing and the factors that influence purchasing, are addressed in this report. Also discussed are trends that have stimulated this market and patterns of information processing in array testing instruments.

1.3 Objectives

The goal of this report is to review the market for DNA and protein array testing equipment and supplies that use screening reagents and instruments for the analysis of individual components in blood, serum or plasma. The dollar volume of sales is defined, both worldwide and in the U.S., and the factors that influence the size and the growth of the market segments are analyzed. Additionally, the numbers of institutions using this type of testing and the factors that influence purchases are discussed. The report surveys almost all of the companies known to be marketing, manufacturing or developing instruments and reagents for the protein array market in the U.S. Each company is discussed in depth with a section on its history, product line, business and marketing analysis, and a subjective commentary of the company’s market position.
1.4 Methodology

The author of this report holds a Ph.D. in biochemistry from the University of Minnesota and has had post-doctoral experience at the University of Connecticut, School of Medicine. He has taught at Quinnipiac University and the Tufts School of Medicine, and has been a senior scientist at Pfizer Pharmaceutical Laboratories in drug development. He also has many decades of experience in science writing and as a medical industry analyst. He has over 30 years of experience in laboratory testing and instrument and reagent development technology as a licensed clinical laboratory director, as well as extensive experience in senior level management positions in biotech and medical service companies. The editor holds a Ph.D. in life sciences from Jawaharlal Nehru University, with post-doctoral training from the University of Manitoba and Saskatoon Cancer Centre in Winnipeg and Saskatoon, respectively. She has authored several peer-reviewed articles on the molecular mechanisms and signaling pathways involved in cancer progression, and has over five years’ experience as a scientific editor.

Company-specific information is obtained mainly from industry trade publications, academic journals, news and research articles, press releases and corporate websites, as well as annual reports for publicly-held firms. Additional sources of information include non-governmental organizations (NGOs) such as the World Health Organization (WHO) and governmental entities such as the U.S. Department of Health and Human Services (HHS), the National Institutes of Health (NIH), the Food and Drug Administration (FDA) and the Centers for Disease Control and Prevention (CDC). Where possible and practicable, the most recent data available have been used.

Some of the statistical information was taken from Biotechnology Associates’ databases and from TriMark’s private data stores. Although believed to be reliable, the information in this study is not guaranteed as accurate, adequate or complete. We do not take responsibility for the results obtained by the use of such information.

Key information from the business literature was used as a basis to conduct dialogue with and obtain expert opinion from market professionals regarding commercial potential and market sizes. Senior managers from major company players were interviewed for part of the information in this report.

Primary Sources

TriMark collects information from hundreds of Database Tables and many comprehensive multi-client research projects, as well as Sector Snapshots that it publishes annually. TriMark extracts relevant data and analytics from its research as part of this data collection.

Secondary Sources

TriMark uses research publications, journals, magazines, newspapers, newsletters, industry reports, investment research reports, trade and industry association reports, government-affiliated trade releases and other published information as part of its secondary research materials. The information is then analyzed and translated by the Industry Research Group into a TriMark study. The Editorial Group reviews the complete package with product and market forecasts, critical industry trends, threats and opportunities, competitive strategies, and market share determinations.

TriMark Publications Report Research and Data Acquisition Structure

The general sequence of research and analysis activity prior to the publication of every report includes the following items:

• Completing an extensive secondary research effort on an important market sector, including gathering all relevant information from corporate reporting, publicly available databases, proprietary databases, direct meetings, and personal interviews with key personnel.

• Formulating a study outline with the assigned writer, including the following important items:
  • Market and product segment grouping and evaluating their relative significance.
• Key competitors’ evaluations including their relative positions in the business and other relevant facts to prioritize diligence levels and assist in designing a primary research strategy.
• End-user research to evaluate analytical significance in market estimation.
• Supply chain research and analysis to identify any factors affecting the market.
• New technology platforms and cutting edge applications.

• Identifying the key technology and market trends that drive or affect these markets. Assessing the regional significance for each product and market segment for proper emphasis of further regional/national primary and secondary research.

• Launching a combination of primary research activities including two levels of questionnaires, executive-direct focused, company-specific, and region-specific communications to qualified and experienced senior executives worldwide.

• Completing a confirmatory primary research assessment of the report’s findings with the assistance of Expert Panel Partners from the industry being analyzed.

1.5 Executive Summary

A microarray is an arrangement of miniaturized test sites or “spots” on a surface. Microarrays are often also known as “biochips”. The microarray format allows many tests or experiments to be performed simultaneously, in parallel, leading to the generation of huge amounts of biological information with the application of only a tiny amount of sample. This large-scale quantitative approach has changed biological research by allowing the analysis of whole genomes. Microarray technology enables scientists to attain ambitious goals by identifying genetic variations associated with disease to discovering new drug targets. This technology also simplifies, accelerates and reduces the cost of understanding this genetic information. Microarrays are now being used in more applications to validate results from sequencing or to take the outputs from sequencing SNPs, and apply them on a more cost-effective and higher-throughput platform, such as genotyping in humans and agricultural biotechnology applications.

Affymetrix, founded in 1992, was the first company to commercialize the microarray with the launch of its GeneChip®. Affymetrix still dominates the gene chip market, offering both DNA and protein microarrays to the pharma and biotech industries, and academic and government research labs. There is a trend towards significant consolidation in this sector over the next three years. With the top three firms having an early market presence and large R&D, sales and marketing budgets, it will be difficult for smaller companies and start-ups to gain significant market share in the gene expression segment. The top three microarray companies include Affymetrix, Illumina and Agilent. Primary applications for microarrays include gene expression profiling, biomarker profiling, and more recently cancer diagnostics. Growth in the microarray market is expected to come from the personalized medicine as well as advances in lab-on-a-chip (LOAC) technology.

New technology platforms, such as aptamer nanpores, are driving breakthrough innovations in microarrays. The technology has moved downstream to direct clinical and diagnostic applications. Another high-growth driver in microarray markets is the lab-on-a-chip (LOAC), which is based on the principle that a complete chemical or biochemical assay, from sample to result, can be engineered into a single, miniaturized device. Microarray and LOAC technologies leverage semiconductor-based photolithographic fabrication and microfluidic techniques, which enables the manufacturer to synthesize a large variety of analytical features simultaneously in predetermined locations on an independent, miniaturized, assay device. Lab-on-a-chip technology is poised for growth as a new tool for diagnostics. One promising area of growth features the combination of the multiplexing capabilities of microarrays with the efficiency of LOAC.

The Asian market is a major factor in future biochip market growth with fast developing economies such as India and China. Many of the biochip companies, including Affymetrix, Illumina and Fluidigm Corporation have moved their manufacturing bases to Singapore to take advantage of the benefits the country offers.

The rapid growth of the clinical research and the diagnostic devices markets holds the potential for microarray technology applications ranging from basic research to clinical trials and, ultimately, diagnostic devices. As a result, microarray companies are working with leaders in molecular diagnostics to provide custom made probe arrays to
their specifications. Their partners subsequently package the chips into kits, seek regulatory approval for their diagnostic use, and sell them into the diagnostic markets using their sales channels. The microarray companies are leveraging their partners’ strengths in research, development, regulatory practices and distribution while leveraging their strengths in array technology. In point of care diagnostics, microarray-based tests and screens provide an attractive way of obtaining rapid results for panels of genes and proteins involved in cancer, heart disease and other chronic diseases. The prospect of obtaining maximum data from minimal sample is also important in the clinical context.

Technology displacement—the next generation sequencing platform RNAseq—is widely considered to be replacing arrays as the platform of choice for many gene expression-based studies. While dropping prices and maturing technology are causing NGS to make headway in becoming the technology of choice for a wide range of applications, the transition away from microarrays is a long and varied one. Investigators continue to use arrays for a number of reasons, including ease of use, installed instruments, and legacy data. Different applications have different requirements, so researchers need to carefully weigh their options when making the choice to switch to a new technology or platform. Regardless of which technology they choose, genomic researchers have never had more options.

There are two major applications for DNA microarray technology including the following:

- Identification of sequence variations.
- Determination of gene expression levels.

Other applications for microarray technologies include array comparative genomic hybridization (aCGH), copy number variation (CNV), DNA methylation, ChIP-Chip, RNA splice variants, microRNA and resequencing. New technology platforms enable the production and analysis of a variety of microarrays including proteome microarrays. Target molecules are printed into microarrays using a spotting device, nanoprinter or other microarray imprints and attached using a variety of surfaces depending on the application and detection method.

Protein microarray applications include the following:

- Expression profiling.
- Serum-based diagnostics.
- Protein-protein binding assays.
- Drug-target binding.
- Receptor-epitope binding.
- Diagnostics.
- High-throughput screening.