MOLECULAR DIAGNOSTICS IN CANCER TESTING
(SAMPLE COPY, NOT FOR RESALE)

Trends, Industry Participants, Product Overviews and Market Drivers
TABLE OF CONTENTS

1. Overview 10
 1.1 Statement of Report 10
 1.2 About This Report 10
 1.3 Scope of the Report 11
 1.4 Objectives 11
 1.5 Methodology 11
 1.6 Executive Summary 13

2. Introduction to Molecular Diagnostics 20
 2.1 Opening of Opportunities in Molecular Diagnostics 20
 2.2 Impact of the Human Genome Project on Molecular Diagnostics 22
 2.3 Considerations for Molecular and Clinical Diagnostics 23
 2.4 Molecular Diagnostics in the Post-Genomic Era 25
 2.5 Advances in Molecular Diagnostics Technologies 26
 2.5.1 Molecular Methods to Detect Genetic Variants in Cancer 27
 2.5.1.1 Allele-Specific PCR 29
 2.5.1.2 Sanger Dideoxy Sequencing 29
 2.5.1.3 Pyrosequencing 30
 2.5.1.4 Mass Spectrometry 30
 2.5.1.5 Single Base Extension Assay 30
 2.5.1.6 Multiplex Ligation-Dependent Probe Amplification (MLPA) 31
 2.5.1.7 Fluorescence In Situ Hybridization (FISH) 31
 2.5.1.8 Next Generation Sequencing 31
 2.5.1.8.1 Next-Generation Sequencing—Custom Panels, Amplicon Capture 32
 2.5.1.8.2 Next-Generation Sequencing—Custom Panels, Hybridization Capture 32
 2.5.1.8.3 Next-Generation Sequencing—Whole Exome Sequencing 33
 2.5.1.8.4 Next-Generation Sequencing—Whole Genome Sequencing 33
 2.5.1.9 Digital Droplet PCR (ddPCR) 33
 2.6 Oligonucleotide Array Platforms 36
 2.7 Emerging Cancer Personalized Medicine Market 37
 2.8 Companion Diagnostics 41
 2.9 Opportunities for Molecular Diagnostic Companies 50
 2.10 Liquid Biopsies 51
 2.11 Data Analysis 51
 2.12 In-house vs. Commercial Testing 52
 2.13 Multi-Gene Cancer Panels 53

3. Cancer Diagnostics Molecular Testing Market 54
 3.1 Market Description 54
 3.1.1 Market Overview for Molecular Diagnostics in Cancer Testing 54
 3.1.2 Laboratories Performing Molecular Diagnostics for Cancer Testing 57
 3.1.3 Competitive Landscape 59
 3.1.3.1 Pure Play Specialty Companies Performing Tumor MDx Analysis 59
 3.1.3.2 Mixed Specialty Cancer Diagnostic Labs 60
 3.1.3.3 General Clinical Reference Laboratories 60
 3.1.3.4 Diagnostic Device and Reagent Developers 61
 3.1.3.5 Companion Diagnostics Development in Partnership with a Pharmaceutical Company 61
 3.1.4 Sales and Marketing Strategies for Cancer Tests 62
 3.1.4.1 North American Market 63
 3.1.4.2 International Markets 64

4. Molecular Diagnostic Tests for Cancer 66
4.1 Overview of Molecular Diagnostics for Cancer 66
 4.1.1 Cancer Statistics 66
 4.1.2 Treating Cancers 67
 4.1.3 Use of Genomics to Understand Cancer 68
 4.1.4 Molecular Diagnostic Tools Solutions 70
 4.1.5 Technology of Gene Expression Analysis 72
 4.1.5.1 Amplify and Detect Diminished Amounts of RNA Consistently 72
 4.1.5.2 Analyze Hundreds of Genes 72
 4.1.6 Employ Advanced Information Technology 73
4.2 Breast Cancer Molecular Diagnostics 73
 4.2.1 Overview of Breast Cancer 73
 4.2.2 Breast Cancer Molecular Diagnostic Assays 76
 4.2.2.1 Ambry Genetics 77
 4.2.2.2 Agendia
 4.2.2.2.1 MammaPrint 78
 4.2.2.3 BGI 80
 4.2.2.4 Bioreference Labs 80
 4.2.2.5 BioTherontics (part of BioMérieux) 81
 4.2.2.5.1 Breast Cancer Index 81
 4.2.2.6 Cancer Genetics, Inc. (CGI) 81
 4.2.2.7 Dako (part of Agilent Technologies) 82
 4.2.2.8 DiaSorin 82
 4.2.2.9 Fulgent Diagnostics 82
 4.2.2.10 Genetic Technologies Ltd. 82
 4.2.2.11 Genomic Health 83
 4.2.2.11.1 Oncotype DX 83
 4.2.2.12 Genoptix (part of Novartis) 84
 4.2.2.13 Invitae 85
 4.2.2.14 LabCorp 85
 4.2.2.14.1 BRCAassure® Tests 86
 4.2.2.15 Multiplicom 86
 4.2.2.16 Myriad Genetics 86
 4.2.2.16.1 BRACAnalysis® 87
 4.2.2.16.2 BART® 87
 4.2.2.17 Nanostring Technologies 87
 4.2.2.17.1 Prosigna 87
 4.2.2.18 Neogenomics 88
 4.2.2.19 Pathway Genomics 88
 4.2.2.20 Sophia Genetics 88
 4.2.2.21 Quest Diagnostics 88
 4.2.2.21.1 BRCAVantage Plus 88
 4.2.2.22 Ventana Medical Systems (Roche) 89
 4.2.2.22.1 HER2 Dual ISH DNA Probe Cocktail, INFORM 89
 4.2.3 Competitive Structure and Market Share Analysis 89
 4.2.3.1 Breast Cancer Molecular Diagnostic Testing Market Size 91
 4.2.3.1.1 Global Market 91
 4.2.3.1.2 U.S. Market 91
 4.2.3.1.3 European Market 91
 4.2.4 Market Drivers and Restraints 92
 4.2.4.1 Market Drivers 92
 4.2.4.2 Market Restraints 92
 4.2.5 Breast Cancer Molecular Diagnostic Testing Assay Market and Technology Trends 93
 4.2.5.1 Breast Cancer Molecular Diagnostic Testing Assay Market Trends 93
 4.2.5.2 Breast Cancer Molecular Diagnostic Testing Assay Technology Trends 93
 4.2.6 Breast Cancer Testing Assay Strategic Recommendations 93
4.3 Colorectal Cancer Molecular Diagnostics Market 94
4.4.1.1 PROGENSA PCA3 Assay
4.4.1.2 Bostwick Laboratories
4.4.1.2.1 PCA3Plus
4.4.1.3 Overview of PCA3
4.4.1.4 MDx Health
4.4.1.4.1 SelectMDx for Prostate Cancer
4.4.1.5 Invitae
4.4.1.5.1 Invitae Prostate Cancer Panel
4.4.1.6 Neogenomics
4.4.1.6.1 NeoLAB Prostate
4.4.2 Molecular Assays Performed After Colorectal Biopsy
4.4.2.1 Myriad Genetics
4.4.2.2 Genomic Health
4.4.2.3 MDxHealth (ConfirmMDx)
4.4.2.4 Bostwick Laboratories (ProstaVysion)
4.4.2.5 MDNA Life Sciences
4.4.2.5.1 Prostate Core Mitomic Test
4.4.2.6 GenomDx
4.4.2.6.1 Decipher
4.4.3 Competitive Structure and Market Share Analysis
4.4.4 Market Drivers and Restraints
4.4.4.1 Market Drivers
4.4.4.2 Market Restraints
4.4.5 Prostate Cancer Molecular Diagnostic Testing Assay Market and Technology Trends
4.4.5.1 Prostate Cancer Molecular Diagnostic Testing Assay Market Trends
4.4.5.2 Prostate Cancer Molecular Diagnostic Testing Assay Technology Trends
4.5 Ovarian Cancer
4.5.1 Incidence of Ovarian Cancer
4.5.2 Key Players in Ovarian Testing Market
4.5.2.1 Ambry Genetics
4.5.2.2 Myriad Genetics
4.5.2.3 Market Drivers and Restraints
4.5.2.3.1 Market Drivers
4.5.2.3.2 Market Restraints
4.6 Lung Cancer
4.6.1 Incidence of Lung Cancer
4.6.2 Pharmacogenomics and Cancer
4.6.3 Lung Cancer Molecular Diagnostics Assays
4.6.3.1 Genoptix (a Novartis company)
4.6.3.1.1 NexCourse NSCLC
4.6.3.2 Qiagen
4.6.3.3 Roche
4.6.3.3.1 cobas® EGFR Mutation Test v2
4.6.3.4 Epigenomics
4.6.3.4.1 Epi proLung® BL Reflex Assay
4.6.3.5 Myriad Genetics
4.6.3.5.1 myPlan™ Lung Cancer
4.6.3.6 Quest Diagnostics
4.6.3.6.1 Lung Cancer Mutation Panel
4.6.3.7 Rosetta Genomics
4.6.3.7.1 OncoGxLung
4.6.3.8 Trovagene
4.6.3.8.1 PCM EGFR Mutation Detection Test
4.6.3.9 Veracyte, Inc. 138
4.6.3.9.1 Percepta 138
4.6.3.10 Accugenomics 138
4.6.3.10.1 Lung Cancer Risk Test (LCRT-AGX) 14 Gene Test 138
4.6.4 Competitive Space 139
4.7 Melanoma 139
4.7.1 bioMérieux 140
4.7.1.1 THxID™ BRAF 140
4.7.2 Roche 141
4.7.2.1 cobas® 4800 BRAF V600 Mutation Test 141
4.7.3 Myriad 141
4.7.3.1 myPath™ Melanoma 141
4.7.4 Trovagene 141
4.7.4.1 PCM BRAF Mutation Detection Test 141
4.8 Molecular Diagnostic Assays for Other Types of Cancers 142
4.8.1 Accugenomics 142
4.8.1.1 Standardized BCR-ABL Molecular Diagnostics Test 142
4.8.2 Ambyr Genetics 142
4.8.2.1 PaneNext 142
4.8.2.2 PGLNext 142
4.8.2.3 RenalNext 143
4.8.3 Asuragen 143
4.8.3.1 QuantideX® qPCR BCR-ABL IS Kit 143
4.8.4 DiaSorin 143
4.8.4.1 PML-RARA Detection bcr1,3 and Discrimination bcr2 143
4.9 Panels Testing Multiple Cancers 144
4.9.1 Ambyr Genetics 144
4.9.1.1 CancerNext 144
4.9.1.2 CancerNext-Expanded 144
4.9.2 Biotheranostics 144
4.9.2.1 CancerTYPE ID 144
4.9.3 Cancer Genetics, Inc. (CGI) 144
4.9.4 Color Genomics 146
4.9.4.1 Color Test 146
4.9.5 Counsyl Labs 146
4.9.6 Guardant Health 146
4.9.7 Multiplicom 147
4.9.7.1 SOMATIC 1 MASTR™ Plus Dx 147
4.9.8 Myriad Genetics 147
4.9.8.1 myRisk™ Hereditary Cancer 147
4.9.9 Pathway Genomics 147
4.9.9.1 CancerIntercept™ Detect 147
4.9.10 Quest Diagnostics 148
4.9.10.1 OncoVantage® Solid Tumor Mutation Analysis 148
4.9.11 Rosetta Genomics 148
4.9.11.1 OncoGxOne™ 148
4.10 Potential new Entrants to the Market 148
4.10.1 Illumina 148
4.10.2 Metabiomics 148
4.10.3 Orion Genomics 149
4.10.4 Siemens 149
4.10.5 VolitionRx 149
5. Business 151
5.1 Technology and Market Trends 151
5.1.1 Technology Trends 152
5.1.2 Market Trends 152
5.2 M&A Activity 154
5.3 Partnerships 156
5.4 Summary of Market Strengths, Weaknesses, Opportunities and Threats 158
5.4.1 Industry Challenges and Strategic Recommendations 159
5.4.2 Commercialization of Molecular Diagnostic Products 159
5.5 Intellectual Property Rights 160
5.5.1 BRCA1 and BRCA2 Gene Patents 161
5.5.2 Current Patent Disputes 161

6. Reimbursement and Billing 163
6.1 Overview 163
6.2 Trends in Reimbursement Practice 163
6.2.1 Medicare Reimbursement 163
6.2.2 Analysis of ROI for MDx Tests for Cancer Using Medicare Reimbursement Rules 166
6.3 Trends in Patient Care and Reimbursement 166
6.4 Revenue Threats 167
6.4.1 Three Areas for Denial of Claims by Biomarkers 169
6.5 Billing 169
6.5.1 Medicare Billing Procedures 170
6.5.2 Medicare CPT Coding Rules for Cancer Biomarkers 170

7. Government Regulation 172
7.1 U.S. Food and Drug Administration 172
7.2 CLIA Regulations 173
7.3 Clinical Laboratory Improvement Act 173
7.4 State Licensing for Service Laboratories 175
7.5 510(k) Clearance 175
7.6 Pre-Market Approval 175
7.7 ASRs 175
7.8 What Regulatory Guidance is Needed for Companion Biomarkers? 176
7.9 U.S. Patent and Trademark Office 177
7.10 IRB Approval in Clinical Trials 177
7.11 Microarray Quality Control 177
7.12 ER and PR Proficiency Testing 178

8. Company Profiles 179
8.1 Abbott Molecular Diagnostics 179
8.2 AccuGenomics, Inc. 179
8.3 Agenda 179
8.4 Ambry Genetics 180
8.5 Asuragen 180
8.6 BGI 180
8.7 Biodesix 181
8.8 bioMérieux 181
8.9 Bioreference Labs 182
8.10 bioTheranostics 182
8.11 Cancer Genetics, Inc. 182
8.12 Counsyl 185
8.13 Dako (an Agilent Technologies company) 185
8.14 DiaSorin 185
8.15 Epigenomics 185
8.16 Exact Sciences Corporation 186
8.17 Exiqon 186
8.18 Flatiron Health 187
8.19 Fulgent Diagnostics 187

© 2016 TriMark Publications, LLC. All rights reserved. www.trimarkpublications.com
INDEX OF FIGURES

Figure 2.1: Finding Genes with Microarrays 21
Figure 2.2: Use of Microarrays for Studying Gene Expression 21
Figure 2.3: Finding New Drugs with Microarrays 22
Figure 2.4: Using DNA Microarrays to Compare Cancer and Normal Cells 22
Figure 2.5: Microarrays for Prediction of Survival in Cancer 24
Figure 2.6: ddPCR Using a Single Color Probe 34
Figure 2.7: ddPCR Using Two Probe Colors 34
Figure 2.8: BEAMing Method of ctDNA Detection 35
Figure 2.9: Using Gene Expression Patterns to Choose Treatment 37
Figure 3.1: Molecular Diagnostic Markets for Cancer Testing Globally, 2015 55
Figure 3.2: Molecular Diagnostic Markets for Cancer Testing in the U.S., 2015 56
Figure 3.3: Market Share for Key Companies in the Global Molecular Diagnostics Cancer Testing Market 56
Figure 3.4: Market Growth and Evolution of MDx Cancer Biomarkers 62
Figure 4.1: Using DNA Microarrays to Measure Gene Expression 69
Figure 4.2: Schematic of Molecular Diagnostics for Studying Gene Expression in Patients 69
Figure 4.3: Action of Herceptin in Breast Cancer Patients 75
Figure 4.4: Analysis of Cancer Tissue by Microarray 79
Figure 4.5: HNPCC Mutation Increases Risk of Cancer 108
Figure 4.6: APC Mutation Increases Risk of Cancer 108
Figure 4.7: Prostate-Specific Membrane Antigen 116
Figure 4.8: PCA3 Score Nomogram 119
Figure 4.9: Ovarian Cancer Types 128
Figure 4.10: Targets for Therapy—Mutations Associated with Lung Cancer 133
Figure 4.11: Molecular Subsets of Lung Cancer 133
Figure 5.1: FDA Co-Developed Products as a Model for Collaboration 157
INDEX OF TABLES

Table 2.1: Types of Molecular Tests and Types of Genetic Variants Detected 28
Table 2.2: Use of Cancer Biomarkers to Enhance Patient Care 37
Table 2.3: Targeted Drug Therapies for Cancers 38
Table 2.4: Select Genes and Cancer Risk 40
Table 2.5: Use of Cancer Biomarkers in Drug Development 42
Table 2.6: Utility of Biomarkers as Companion Diagnostics to Drug Development 42
Table 2.7: FDA Approved Companion Diagnostics 43
Table 2.8: Recommended Databases for Interpreting Somatic Mutation Results in Cancer 52
Table 3.1: Specific Diagnostic Products Categories Comprising the Cancer Diagnostic Market 54
Table 3.2: Global Market for Molecular Diagnostics Cancer Testing, 2012-2021 54
Table 3.3: U.S. Market for Molecular Diagnostics Cancer Testing, 2012-2021 55
Table 3.4: Molecular Diagnostic Markets for Cancer Testing, 2015 56
Table 3.5: Key Companies in the Global Molecular Diagnostics Cancer Testing Market 57
Table 3.6: Highlights of the Cancer Diagnostic Testing Segment 58
Table 3.7: Highlights of Certified Clinical Labs Specializing in Cancer Genetics and Molecular Diagnostic Services 58
Table 3.8: Business Factors Influencing Advanced Oncology Testing Services 58
Table 3.9: Strategies for Marketing Cancer Diagnostic Products 63
Table 3.10: Key Elements of MDx Diagnostic Companies Marketing Plan 63
Table 4.1: FDA Approved Cancer Tests 66
Table 4.2: Estimates for the Leading Sites of New Cancer Cases in the U.S. by Gender, 2016 66
Table 4.3: Estimates for the Leading Sites of Cancer Deaths in the U.S. by Gender, 2016 67
Table 4.4: Molecular Diagnostic Technologies 70
Table 4.5: Breast Cancer Overview 74
Table 4.6: Overview of HER2/neu and Herceptin 75
Table 4.7: Key Players in the Breast Cancer Molecular Diagnostic Space 76
Table 4.8: FDA-Approved Breast Cancer Molecular Diagnostic Tests on the Market 77
Table 4.9: MammaPrint: Key Features 80
Table 4.10: Clinical Utility and Health Economic Benefits of Oncotype DX 84
Table 4.11: Oncotype DX Overview 84
Table 4.12: Major Laboratory Testing Companies Marketing Breast Cancer Molecular Diagnostic Tests, 2015 90
Table 4.13: Global Market for Breast Cancer Molecular Diagnostic Testing, 2012-2021 91
Table 4.14: U.S. Market for Breast Cancer Molecular Diagnostic Testing, 2012-2021 91
Table 4.15: Breast Cancer Molecular Diagnostic Testing Market: Market Drivers Ranked in Order of Impact 92
Table 4.16: Breast Cancer Molecular Diagnostic Testing Market: Market Restraints Ranked in Order of Impact 92
Table 4.17: Summary of Strengths, Weaknesses, Opportunities and Threats of the Breast Cancer Molecular Diagnostic Market 93
Table 4.18: Colorectal Cancer Overview 95
Table 4.19: Key Players in the Breast Cancer Molecular Diagnostic Space 95
Table 4.20: FDA-Approved and/or CE-marked Colorectal Cancer Molecular Diagnostic Tests on the Market 96
Table 4.21: KRAS Assays by Analytical Type 97
Table 4.22: KRAS Mutation Analysis Summary 98
Table 4.23: KRAS and BRAF in Clinical Use 98
Table 4.24: Key Players in the Colorectal Cancer Molecular Diagnostic Space 100
Table 4.25: NexCourse CRC Test Offering and Treatment Direction 106
Table 4.26: Global Market for Molecular Diagnostic Colon Cancer Testing, 2012-2021 111
Table 4.27: U.S. Market for Molecular Diagnostic Colon Cancer Testing, 2012-2021 112
Table 4.28: Colon Cancer Molecular Diagnostic Testing Market: Market Drivers Ranked in Order of Impact 112
Table 4.29: Colon Cancer Molecular Diagnostic Testing Market: Market Restraints Ranked in Order of

© 2016 TriMark Publications, LLC. All rights reserved.
Impact 113
Table 4.30: Summary of Strengths, Weaknesses, Opportunities and Threats of the Colon Cancer Market 114
Table 4.31: Stages in Prostate Cancer Discovery and Diagnosis 116
Table 4.32: Corporate Players in the Prostate Cancer Molecular Diagnostic Space 117
Table 4.33: Prostate Cancer Molecular Diagnostic Testing Market: Market Drivers Ranked in Order of Impact 125
Table 4.34: Prostate Cancer Molecular Diagnostic Testing Market: Market Restraints Ranked in Order of Impact 125
Table 4.35: Summary of Strengths, Weaknesses, Opportunities and Threats of the Prostate Cancer Molecular Diagnostic Market 126
Table 4.36: Ovarian Cancer Molecular Diagnostic Testing Market: Market Drivers in Order of Impact 129
Table 4.37: Ovarian Cancer Molecular Diagnostic Testing Market: Market Restraints in Order of Impact 130
Table 4.38: Lung Cancer Survival Rates 130
Table 4.39: Lung Cancer Facts 131
Table 4.40: Pharmacogenetic Markers for Select Cancer Drugs 132
Table 4.41: Potential of Cancer Biomarkers in Drug Delivery and Development 133
Table 5.1: Technology Trends in Cancer Testing 152
Table 5.2: Trends in Theranostics 152
Table 5.3: Market Trends in Cancer Testing 153
Table 5.4: Molecular Diagnostics Cancer Market: Market Drivers Ranked in Order of Impact 153
Table 5.5: Molecular Diagnostics Cancer Market: Market Restraints Ranked in Order of Impact 154
Table 5.6: Summary of Strengths, Weaknesses, Opportunities and Threats of the Glucose Point of Care Market 158
Table 5.7: Molecular Diagnostics Cancer Market: Strategic Recommendations on Molecular Diagnostic Sector Business Functions 159
Table 5.8: Total U.S. Molecular Diagnostics Cancer Market: Impact of Top Industry Challenges 159
Table 5.9: Key Elements for Business Competition in Gene Expression Profiling for Cancer 160
Table 6.1: Factors Determining Third-Party Payment for Advanced Cancer Tests 168
Table 7.1: Rules that Affect the Ability of a Cancer Diagnostic Service Lab to Conduct Business 172
Table 7.2: Focus Areas for the FDA Critical Path Initiative 177
1. Overview

1.1 Statement of Report

This report describes the specific segment of the in vitro diagnostics (IVD) market known as molecular diagnostics (MDx), with a specialization in the MDx tests for cancer. In the current medical diagnostics market, molecular diagnostics for cancer testing offers one of the brightest areas for growth and innovation. The confluence of breakthroughs in genomics, proteomics, and the development of microarray devices to measure analytes in the blood and various body tissues, has led to this revolutionary market segment offering the power of advanced analytical techniques to the diagnosis and treatment of cancer.

This market report analyzes the size and growth of the molecular diagnostics market in its applications for cancer detection and therapy, examining the factors that influence the various market segments and the dollar volume of sales, both in the United States and worldwide. The cancer market has been divided into the following major parts for examination:

- Breast cancer molecular diagnostics market.
- Colorectal cancer molecular diagnostics market.
- Prostate cancer molecular diagnostics market.
- Other cancer molecular diagnostic market segments.

This segregation is based upon the available technology platform advances and the number of companies interested in that segment of the cancer market.

1.2 About This Report

This report includes the following features:

- It examines the generally-accepted clinical analytical activities in use today in the molecular diagnostics sector for diagnosis and management of cancer. It includes the prevalent clinical-measurement devices such as genomic profiling analysis and the accompanying reagents and supplies as utilized in hospitals and large reference and specialty Clinical Laboratory Improvement Amendments of 1988 (CLIA)-licensed laboratories.

- It discusses the potential benefits of the molecular diagnostics technique for various sectors of the medical and scientific communities, and it assesses the market drivers and bottlenecks for MDx tests from the perspective of these communities.

- It establishes the current total MDx market size and future growth of the molecular diagnostics market for cancer management, and analyzes the current size and growth of various segments.

- It assesses various business models in molecular diagnostics for cancer, including CLIA-licensed specialty labs, general reference labs and reagent kit marketing, and also provides strategic recommendations for near-term business opportunities.

- It examines the products offered and roles played by companies that have invested significantly in this market, and it provides current and forecasted market shares by these companies.

- It discusses new collaborative business models that bring together diagnostics and therapeutics.

- It evaluates the role that cancer prognostic assays can play in partnership opportunities in personalized medicine.
1.3 Scope of the Report

The goal of this study is to review the market for molecular diagnostics testing equipment and supplies using reagents and instruments for analysis of individual components in body tissues and fluids. Toward this goal, this review answers the following key questions:

- Which companies are utilizing new, cutting-edge technologies to develop, validate and market molecular tests for clinical use in cancer management?
- What are the current impediments to incorporating promising molecular tests into clinical practice?
- Which new molecular diagnostics tests show the most promise for approval?
- What are the economic challenges to gaining approval?
- What kind of approval is best?
- How can regulatory oversight drive approval and adoption of new technologies?
- Which alliances show the greatest synergy in bringing molecular diagnostics tests to market?
- Which shared technologies are driving the most encouraging development?

This examination surveys most of the biotech companies known to be currently marketing, manufacturing or developing instruments and reagents for the molecular diagnostics market for cancer management, in both the U.S. and the world. Each company is discussed in depth, with sections on its history, product line, business and marketing analysis, and a subjective commentary of the company’s market position.

The U.S. is the focus of this report. Primary attention is paid to the specialty and reference lab market segment and, separately, to the instruments, reagents and supplies marketed by the leading companies in this segment. Market size, growth rates and market components for instruments, reagents, controls and consumables used in this area are also analyzed.

1.4 Objectives

The main objectives of this analysis are:

- Identifying viable technology drivers through a comprehensive look at platform technologies for molecular diagnostics in cancer management, including probe-based nucleic acid assays, microarrays and sequencing.
- Obtaining a complete understanding of the chief characteristics of molecular diagnostics tests—namely, predictive, screening, prognostic, monitoring, pharmacogenomic and theranostic tests—from their basic principles to their applications.
- Discovering feasible market opportunities by identifying high-growth applications in different clinical cancer diagnostic areas (breast cancer being the leading one).
- Focusing on global industry development through an in-depth analysis of the major world markets for molecular diagnostics for cancer management, including growth forecasts.

The emphasis in this report is on the clinical use of molecular diagnostics tests for cancer diagnosis and management. The reader should consult other TriMark Publications reports at www.trimarkpublications.com for detailed discussions of important individual market segments related to the molecular diagnostics market or routine testing. In addition to this report, TriMark Publications offers a complete suite of market reports aimed at the molecular diagnostic space including: Molecular Diagnostics Markets, Molecular Diagnostics in Genetic Testing and Molecular Diagnostics in Infectious Disease Testing.

1.5 Methodology

The author of this report holds a Ph.D. in biochemistry from the University of Minnesota and has had post-doctoral experience at the University of Connecticut School of Medicine. He has taught at Quinnipiac University and the Tufts School of Medicine, and has been a senior scientist at Pfizer Pharmaceutical Laboratories in drug development. He also has many decades of experience in science writing and as a medical industry analyst. He has over 30 years of experience in laboratory testing and instrument and reagent development technology as a licensed clinical laboratory director, as well as extensive experience in senior level management positions in biotech and
medical service companies. He was the first director and a founder of Dianon Laboratories, now part of Laboratory Corporation of America (LabCorp), and was a pioneer in bringing cancer diagnostic tests, including an early prostate-specific antigen test (PSA), to the clinic. The editor of this report has a Masters in Immunology from the University of Colorado with many years of experience in science writing and as a medical industry analyst.

Company-specific information is obtained mainly from industry trade publications, academic journals, news and research articles, press releases and corporate websites, as well as annual reports for publicly-held firms. Additional sources of information include non-governmental organizations (NGOs) such as the World Health Organization (WHO) and governmental entities such as the U.S. Department of Health and Human Services (HHS), the National Institutes of Health (NIH), the Food and Drug Administration (FDA) and the Centers for Disease Control and Prevention (CDC). Where possible and practicable, the most recent data available have been used.

Some of the statistical information was taken from Biotechnology Associates’ databases and from TriMark’s private data stores. The information in this study was obtained from sources that believed to be reliable, but TriMark does not guarantee the accuracy, adequacy or completeness of any information or omission or for the results obtained by the use of such information. Key information from the business literature was used as a basis to conduct dialogue with and obtain expert opinion from market professionals regarding commercial potential and market sizes. Senior managers from major company players were interviewed for part of the information in this report.

Primary Sources

TriMark collects information from hundreds of Database Tables and many comprehensive multi-client research projects, as well as Sector Snapshots that it publishes annually. TriMark extracts relevant data and analytics from its research as part of this data collection.

Secondary Sources

TriMark uses research publications, journals, magazines, newspapers, newsletters, industry reports, investment research reports, trade and industry association reports, government-affiliated trade releases and other published information as part of its secondary research materials. The information is then analyzed and translated by the Industry Research Group into a TriMark study. The Editorial Group reviews the complete package with product and market forecasts, critical industry trends, threats and opportunities, competitive strategies and market share determinations.

TriMark Publications Report, Research and Data Acquisition Structure

The general sequence of research and analysis activity prior to the publication of every report in TriMark Publications includes the following items:

- Completing an extensive secondary research effort on an important market sector, including gathering all relevant information from corporate reporting, publicly-available data and proprietary databases.
- Formulating a study outline with the assigned writer, including important items, as follows:
 - Market and product segment grouping, and evaluating their relative significance.
 - Key competitors’ evaluations, including their relative positions in the business and other relevant facts to prioritize diligence levels and assist in designing a primary research strategy.
 - End-user research to evaluate analytical significance in market estimation.
 - Supply chain research and analysis to identify any factors affecting the market.
 - New technology platforms and cutting-edge applications.
 - Identifying the key technology and market trends that drive or affect these markets.
 - Assessing the regional significance for each product and market segment for proper emphasis of further regional/national primary and secondary research.
 - Completing a confirmatory primary research assessment of the report’s findings with the assistance of expert panel partners from the industry being analyzed.
1.6 Executive Summary

Molecular diagnostics is a rapidly-advancing area of diagnostics testing and clinical medicine, with new technologies and applications being continually added. The technologies that come under the umbrella of molecular diagnostics include first-generation amplification, DNA probes, fluorescent in situ hybridization (FISH), second-generation biochips and microfluidics, biosensors and molecular labels, gene expression profiling using microarrays, and next-generation sequencing. These technologies are improving the discovery of therapeutic molecules for cancer, the screening, diagnosis and classification of cancer patients, and the optimization of drug therapy. Over the past several years, this rapidly evolving field has seen several fascinating developments, including:

- Impact on pharmacogenomics and molecular epidemiology.
- Integration of specialty labs and gene expression profiling into clinical practice.
- Integration into therapeutic choices for cancer and the use of diagnostics for predicting disease recurrence.
- Development of lab-on-a-chip devices.
- Development of companion diagnostics for drug development.
- Use of gene expression profiling for determining the efficacy of therapeutic drugs for cancer.

The cancer molecular diagnostics market comprises several overlapping categories, each corresponding to a stage in the identification and management of the disease. The categories are:

- Determining epigenetic risk.
- Screening.
- Diagnosing.
- Evaluating the prognosis.
- Selecting appropriate therapies.
- Monitoring.

Two Tier Space

More than ☐ companies market products in MDx. Most of these are relatively small, with annual sales between $☐ and $☐ million. The space is bimodal, in that there is a substantial reagent and instrument supply segment, as well as a clinical lab testing segment. In the first segment, several major diagnostic companies, such as Abbott Molecular Diagnostics, Qiagen, and Roche Diagnostics have substantial market shares in each category of the molecular diagnostics market, particularly in providing instruments and reagents. On the other hand, small and medium-sized companies like Myriad Genetics and Exact Sciences comprise a second segment, with innovative products and technology platforms that enable them to become leaders in clinical laboratory testing for several types of cancer.

The exciting thing here is that this market of molecular diagnostics for cancer testing is characterized by robust growth rates (˃20%), which stands in contrast with the low or even negative growth rates of mature in vitro laboratory-testing segments in fields such as hematology and microbiology. Most industry experts believe that over the next few decades, the use of molecular diagnostics will grow rapidly, in the order of 20% to 30% per year, and will have a revolutionary impact on the way clinical medicine is practiced. A particularly important emerging area of focus for MDx services is cancer. In the U.S. alone, the American Cancer Society (ACS) indicates that nearly ☐ individuals are diagnosed with cancer annually, and this rate is expected to grow rapidly as the overall population, including the “baby boomer” generation, ages.

Companion Diagnostics

Advances in genomics are making it possible to choose targeted therapy appropriate to an individual’s genetic makeup. The translation of genomic information into novel molecular diagnostics products is taking place at both the gene and protein levels. Research in genomics has led to a new healthcare paradigm, where a disease is understood at the molecular level, allowing patients to be diagnosed based on genetics of their own unique information and then treated with drugs designed to work on specific molecular targets for cancer. Gene expression profiling will continue to increase as companies in the pharmaceutical industry work with diagnostic companies to
accelerate their drug discovery and development efforts in cancer therapeutics by using companion diagnostic tests in clinical trials, and later as guides to optimum efficaciousness during cancer therapy through targeted drugs. These efforts are expected to create a demand for increasingly effective cancer diagnostic tests. Among the most important questions that future genomics research will address are:

- How do genetic polymorphisms—the variations in DNA sequences among individuals—contribute to susceptibility to chronic diseases such as cancer?
- How do genetic variations influence individual responses to drug therapies?
- How do differences in gene expression in various tissues affect development of diseases like cancer?
- How does gene expression contribute to health and how do changes in gene expression contribute to long term development of cancer?
- How does gene expression regulate recurrence of cancer?

The cancer segment of molecular diagnostics, while not the largest, is growing fast. As molecular diagnostics technologies continue to grow, they offer the potential to move from diagnostics to prognostics and theranostics. Still, the molecular diagnostics market for cancer is difficult to estimate, as it overlaps with the broader IVD market and includes the more routine, older serum tests for cancer (CEA, PSA, CA125, etc.) and is less well-defined than the pharmaceutical or device markets. However, molecular diagnostics is now being used in cancer management in real clinical situations to evaluate patients. Factors that drive the molecular diagnostics business are:

- Personalization of diagnosis and therapy by identifying genes associated with complex diseases, optimizing the drug response, and reducing side effects and failure rates (pharmacogenetics).
- Need for faster methods of diagnosing disease states and medical disorders earlier, and for a powerful, reliable tool for therapy decisions.
- Need for an automated analysis and data evaluation.
- Need to contain or decrease healthcare costs without compromising accuracy or reliability.

Molecular diagnostics using genomic technologies are being used to characterize tumors at the molecular level, and several clinical successes have shown that such information can guide the design of drugs targeted to a specific tumor type. Emerging classes of cancer biomarkers such as microRNAs and epigenetics are also important in this context the emerging cancer personalized medicine market landscape includes:

- Cancer diagnostic tests on the marketplace and in development that are developed as companion-diagnostics (coupled with a therapeutic regimen).
- Landscape of in vitro diagnostic assays that are multigene predictors with prognostic/predictive value.
- Key personalized medicine products in the breast cancer, colon cancer, etc. market spaces—together with the characteristics/features of these products (HER2, Oncotype DX™, MammaPrint®, UGT1A1, KRAS, EGFR and others).

Cancer Targets

According to the American Cancer Society, an estimated 1.65 million new cases of cancer will be diagnosed in the U.S. in 2016, and over half a million people will die of cancer. The latest statistics from the International Agency for Research on Cancer (IARC) estimated that 14.1 million people worldwide were diagnosed with cancer in 2012. TriMark estimates that the U.S. market for advanced cancer diagnostic testing using MDx techniques will increase from an estimated $790 million in 2015, to $1.85 billion by 2021, based upon industry analyst data. The world market for advanced cancer diagnostic testing using MDx will increase from an estimated $1.52 billion in 2015, to $3.52 billion by 2021.

The most common types of cancer include breast, prostate, lung and colon. Cancer treatment decisions may include whether or not to perform surgery, whether or not to administer chemotherapy or radiation therapy, and whether or not to utilize other targeted therapies. Approximately 1.1 million men worldwide will be diagnosed with prostate cancer in 2016. Based upon the results of prostate-specific antigen, or PSA, testing, biopsies will be performed on over one million men in the U.S. in 2016, and more than 23% of these patients will be diagnosed with prostate cancer in 2016 according to the American Cancer Society Cancer Facts & Figures.
Colorectal cancer is the third most common malignant disease after lung and breast cancer, and the second most frequent cause of cancer-related death in the U.S, with more than 134,290 new cases (an estimated 95,270 cases of colon and 39,220 cases of rectal cancer occurring in 2016). In the U.S., nearly 50,000 people will die of this cancer in the same period. In more approximately 32% of people worldwide were diagnosed with colon cancer. In 32%, approximately 47% people in the U.S. and 4% people worldwide were diagnosed with breast cancer, including both invasive and the pre-invasive form, DCIS.

The largest segments in the molecular diagnostics market for cancer testing are breast cancer and colorectal cancer testing. In 2015, the global breast cancer molecular diagnostics market generated $820 million and the U.S. was $455 million in revenues, making them the leading areas by far. Molecular diagnostics for colorectal cancer followed with revenues of $395 million worldwide and $201 million in the U.S. The global prostate ($105 million), lung ($44 million), and melanoma ($23 million) molecular diagnostics markets have the potential to grow to more than double by 2021.

Business Development Factors

There are five basic business models for entry into the cancer molecular diagnostic market:

- **Pure play specialty tumor analysis** (e.g., Myriad, Genomic Health, and Agendia).
- **Mixed specialty cancer diagnostic labs offering cytology, flow cytometry, anatomic pathology, immunohistochemistry and microarray specialty MDx testing** (e.g., Neogenomics, Redpath and Genoptix).
- **General clinical reference labs, national and community** (e.g., Quest and LabCorp).
- **Diagnostic device and reagent developers** (e.g., Exact Sciences, Abbott and Roche).
- **Companion diagnostics development in partnership with a pharmaceutical company.**

Business factors influencing advanced oncology testing services are:

- Demographic shifts to an older (~60 years) population.
- An increased incidence of cancer within an aging population.
- New cancer therapies.
- An expanding test menu for prediction and efficacy.
- Recent trends indicate that treatment decisions are likely to involve the assessment of a complex panel of protein and gene-based testing, rather than a single test.
- Diagnostic and predictive testing for these therapies will likely become increasingly complex, and there will be increased demand for sophisticated tests.
- Advanced molecular tests will also require additional expertise to interpret test results and/or assist pathologists in such interpretations.
- Pharmaceutical companies’ demand for high potential targeted therapies will continue to grow under pressure from the FDA for more effective drugs.
- The nearly 5,000 hospitals and healthcare networks in the U.S. together with their oncology and pathology staffs constitute a large readymade market.
- Biopharmaceutical companies developing new drugs and partnering with large pharmaceutical companies for targeted therapies.
- Emergence of CLIA-certified specialty labs for advanced testing services.

Pharmaceutical companies are investing billions of dollars in the development of high-potential targeted therapies, one of the fastest growing segments of oncology drug development. Many of these therapies will require a specific test (referred to as a “theranostic” or “companion diagnostic”) to assist physicians in selecting the right drug for the right patient. The theranostic is likely to accelerate the process for drug approval and market introduction by guiding selection of the most appropriate patients for the clinical trials. The FDA’s “Critical Path Initiative” is facilitating a national effort to modernize the scientific process through which a potential human drug, biological product or medical device is transformed from a discovery or “proof-of-concept” into a medical product.
A classic example of a targeted therapy that uses a companion diagnostic test is Genentech, Inc.’s Herceptin®, used to target breast tumor cells that have a significant amount of HER2/neu protein on the cell membrane. The National Comprehensive Cancer Network (NCCN), a not-for-profit alliance of 21 of the world’s leading cancer centers, currently mandates that all new breast tumors be tested for HER2/neu status levels. Cancer diagnostic companies provide a wide range of cancer diagnostic and consultative services which include technical laboratory services and professional interpretation. Specific diagnostic products categories comprising the cancer diagnostic market are:

- Immunoassays for serum cancer markers, receptor assays and hormone assays (non-MD products).
- Mammography equipment.
- Clinical chemistry reagents (occult blood reagents, enzymes and serum proteins).
- DNA and gene expression reagents and products (microarrays and chips) (MD products).
- Cytological products.
- Histological reagents.
- Immunocytochemistry products.
- Immunohistochemistry reagent.

Not all cancer diagnostic tests are based on molecular diagnostic technologies, and thus, are not included within the scope of this report.

Significant Trends in Molecular Diagnostics Testing for Cancer

Market trends in cancer testing:

- Rapidly growing market segment in cancer diagnosis.
- Expansion of pharmaceutical and diagnostic collaborations.
- Strong growth of esoteric testing.
- Strong move toward targeted therapies for cancer.
- Expansion of molecular diagnostics to drive therapy decisions.
- Pressure on reimbursements.
- Lack of capital will increase opportunities to license new markers.
- Emerging opportunity for molecular pathology oriented companies.
- Focus on delivering companion diagnostic information for cancer therapies.
- Anti-cancer drugs represent 60% of ongoing Phase II and Phase III therapeutic trials.
- Use of multi-gene cancer profiles for reporting data.
- Increased M&A activity.

Molecular diagnostics cancer market and market drivers ranked in order of impact:

- Core genetic testing industry growth (CAGR ~15%).
- Patent decisions releasing testing of genes involved in cancer will cause of proliferation of CLIA certified testing labs.
- Increased sensitivity for detection of multi-gene abnormalities in tumors.
- Faster detection and analysis times (increased turnaround time, or TAT).
- Higher accuracy of detection, particularly in complex mixtures.
- Ease of use for previously esoteric assays (e.g., HPV).
- Ability for the molecular diagnostic nucleic acid technology platforms to be developed for assay of new analytes.
- Applicability of molecular diagnostic techniques to pharmaceutical industry development needs (e.g., companion diagnostics for drug development).
- The rapid expansion and understanding of genomics and genetic testing.
- The clarification of much proteomic research and development (R&D) through improvements in data handling.
- Continuing breakthroughs in cancer diagnosis and therapy to give clinically actionable information.
- Trend to increased penetration through more tests ordered per requisition for lab orders.
- Increased mergers and acquisitions (M&A) activity.
- Partnering with large diagnostic companies (e.g., Abbott and Roche).

Molecular diagnostics cancer market—market restraints ranked in order of impact:

- High cost of molecular diagnostic based assays.
- Changes in analysis paradigm, particularly in the movement of tests to specialized CLIA labs.
- Inaccessibility of many molecular diagnostic tests to standard laboratory instrumentation, and, therefore, the need for labs to acquire additional hardware for high throughput automated analysis.
- High cost of test results and lack of or reluctance of third-party reimbursement.
- Lack of understanding of molecular tests by oncologists and other physician groups.
- Stringent licensing requirements by CLIA and state governments.
- Complex mix of third-party payors.
- Competition from hospitals and community pathologists using “in-house” testing methods.

Strategic recommendations on molecular diagnostic sector business functions:

- Molecular diagnostic techniques for cancer testing will become a significant growth area during the forecast period.
- Small diagnostic companies marketing reagents and instruments will only succeed in partnership with large diagnostic companies with significant marketing reach and general clinical labs are overdue for consolidation.
- Funding for promising technology platform start ups will become increasing more difficult to obtain, and licensing to large labs will dominate to entry of new test procedures.
- Funding for ongoing small companies who have used up their initial funding will be extremely problematic.
- The cancer testing sector of molecular diagnostics will see a significant increase in the number of active players in the mixed specialty and pure play testing labs.
- Pharmacogenomics of older well used drugs (i.e., Warfarin), although a popular topic with researchers, will not break through into general use in the medical community within the next five years.
- Companion diagnostics for new pharmaceutical drugs will be a grow area for molecular diagnostics as it is driven by increasingly strict FDA requirements for marketing approval.
- Niche areas for diagnostic tests on less tested diseases like lymphoma, leukemia and women’s health determinations will become an important place for small companies to survive and grow.