HEMOGLOBIN A1c TESTING MARKETS
(SAMPLE COPY, NOT FOR RESALE)

Trends, Industry Participants, Product Overviews and Market Drivers
TABLE OF CONTENTS

1. Overview 6
 1.1 Statement of Report 6
 1.2 About This Report 6
 1.3 Scope of the Report 7
 1.4 Methodology 8
 1.5 Executive Summary 9

2. Diabetes 13
 2.1 Demographics of Diabetes 14
 2.1.1 Worldwide Diabetes Incidence 14
 2.1.2 Diabetes in the U.S. 18
 2.2 Understanding the Metabolic Conditions Underlying and Associated with Diabetes 23
 2.2.1 Pre-Diabetes Syndrome 25
 2.2.2 Metabolic Syndrome 25
 2.2.3 Progression of Diabetes 25
 2.2.4 Diabetes and Inflammation 25
 2.2.5 Risk Factors and Diabetes 26
 2.2.5.1 Obesity 27
 2.2.6 Complications and Co-Morbidities in Diabetes 29
 2.2.6.1 Preventing Complications and Co-Morbidities in Diabetes 33
 2.2.6.2 Cardiovascular Disease Facts 34
 2.2 Economics of Diabetes 37
 2.3.1 Worldwide Costs of Diabetes 38
 2.3.2 Costs of Diabetes in the U.S. 38

3. Market Analysis: Size, Growth, Share and Competitors 43
 3.1 Worldwide HbA1c Testing Market 44
 3.1.1 U.S. HbA1c Testing Market 45
 3.2 HbA1c Self-Testing Market 46
 3.3 Competitive Situation 48
 3.3.1 Analyses of the Key Players, Current Market Conditions, and Product Mix 48
 3.3.2 Competitive Strategies and Strategic Recommendations 49
 3.3.3 Future Competing Technologies—Glycated Albumin 50
 3.4 Market Drivers and Restraints 51
 3.4.1 Market Drivers 51
 3.4.2 Market Restraints 52
 3.5 Market and Product Trends 52
 3.5.1 Increase in POC HbA1c Testing 52
 3.5.2 Move Towards Screening for Diabetes Using HbA1c Assays 53
 3.6 Adjacent Markets 53

4. Overview of HbA1c Testing 54
 4.1 Technology Platforms Used to Measure HbA1c 55
 4.1.1 High-Performance Liquid Chromatography (HPLC) 55
 4.1.2 Immunoassays 55
 4.1.3 Boronate Affinity Chromatography 55
 4.1.4 Enzymatic Assay 56
 4.1.5 Micro-Optical Detection Methods 56
 4.2 Development of HbA1c Testing: A Historical Evaluation 56
 4.2.1 The Diabetes Control and Complications Trial (DCCT) 57
 4.3 Standardization of HbA1c Testing and Certification Criteria 57
 4.3.1 National Glycohemoglobin Standardization Program (NGSP) 57
 4.3.2 International Federation of Clinical Chemistry (IFCC) 58
4.3.3 New NGSP Certification Criteria Beginning in January 2014
4.3.4 ADAG (A1c Derived Average Glucose)
4.3.5 2010 Consensus Statement on the Worldwide Standardization of HbA1c
4.3.6 College of American Pathologists (CAP) Proficiency Program
4.3.7 Certifications and Selecting HbA1c Assays
4.4 Advantages and Disadvantages of HbA1c Assessment
4.5 HbA1c Testing Recommendations
4.5.1 Frequency of HbA1c Testing
4.5.2 Diagnostic HbA1c Testing
4.5.3 Screening for Pre-Diabetes
4.5.4 HbA1c Testing for Diabetes Management and Glycemic Goals
4.6 Accuracy and Precision in HbA1c Testing
4.6.1 Biological Variation
4.6.2 Pre-Analytical Variation
4.6.3 Analytical Variation
4.7 Potential Interfering Variables Affecting HbA1c Testing
4.8 Potential Areas of Improvement in HbA1c Testing Performance
4.9 Optimizing of Point of Care (POC) HbA1c Testing
4.10 Key Issues for HbA1c Testing
4.11 HbA1c Testing and Blood Glucose Testing: Complementary Tools

5. HbA1c Testing Devices on the Market
5.1 HbA1c Self-Testing Devices
5.1.1 A1CNow SELFCHECK
5.1.2 DTI Laboratories, Inc.
5.1.3 Heritage Labs International (part of Hooper Holmes)
5.1.4 Solana Health
5.2 Professional HbA1c Testing Devices
5.2.1 Point of Care HbA1c Testing
5.2.1.1 A. Menarini Diagnostics
5.2.1.2 Alere
5.2.1.3 Bio-Rad
5.2.1.4 Convergent Technologies GmbH & Co.
5.2.1.5 DiaSys Diagnostic Systems
5.2.1.6 Diazyme Laboratories
5.2.1.7 EKF Diagnostics
5.2.1.8 HemoCue
5.2.1.9 Infopia
5.2.1.10 Roche
5.2.1.11 Siemens Healthcare Diagnostics
5.2.2 HbA1c Laboratory Testing
5.2.2.1 Abbott
5.2.2.2 Arkay
5.2.2.3 Beckman Coulter
5.2.2.4 Bio-Rad
5.2.2.5 DiaSys Diagnostic Systems
5.2.2.6 Diazyme Laboratories
5.2.2.7 EKF Diagnostics
5.2.2.8 Kyowa Medex, Co., Ltd.
5.2.2.9 Ortho Clinical Diagnostics (part of Johnson & Johnson)
5.2.2.10 Pointe Scientific, Inc.
5.2.2.11 Randox Laboratories
5.2.2.12 Roche
5.2.2.13 Sebia
5.2.2.14 Siemens Healthcare Diagnostics
5.2.2.15 Tosoh

© 2014 TriMark Publications, LLC. All rights reserved.
5.2.2.16 Trinity Biotech

5.3 New Product Innovations and Introductions

5.3.1 Roche’s Cobas Integra 800 Tina-quant HbA1cDx Assay is First FDA-Approved Test for Diagnosing Diabetes

5.3.2 Abbott Announces FDA Clearance for a its ARCHITECT Clinical Chemistry Hemoglobin A1c Test for the Diagnosis and Monitoring of Diabetes

5.3.3 Sebia Announces a New HbA1c Test

5.3.4 Sebia’s CAPILLARYS 2 FLEX Piercing System

5.3.5 Sebia’s MINICAP Flex Piercing

5.3.6 Shelf-Life of EKF Diagnostics’ Quo-Lab HbA1c Test Extended

5.3.7 Convergent Technologies Launches Convergyx HbA1c at Medica 2013

5.3.8 Beckman Coulter Receives FDA Clearance on Next Generation Hemoglobin A1c Test

5.3.9 Trinity Biotech Launches the Premier Hb9210

5.3.10 Trivitron to Enter HbA1c Market

5.3.11 Siemens Healthcare Announced a New Version of the DCA Vantage Analyzer

5.3.12 EKF Diagnostics to Launch the Quo-Lab HbA1c

5.3.13 Tosoh Introduces the ST AIA-PACK HbA1c Assay

5.3.14 Tosoh Introduces a Comprehensive HbA1c Product Line

5.4 Recent Industry Activity and Corporate Developments

5.4.1 PTS, Inc. (now Chek Diagnostics) Acquires A1CNow from Bayer Diabetes Care

5.4.2 Polymer Technology Systems, Inc. (PTS, Inc.) Changes Name to Chek Diagnostics

5.4.3 EKF Diagnostics Quo-Test and Quo-Lab HbA1c POCT Analyzers Comparable to Laboratory HPLC

5.4.4 Radiometer Medical ApS Acquires HemoCue AB

5.4.5 Axis-Shield Acquired by Alere

5.4.6 EKF Diagnostics Opens New Manufacturing Facility at its Quotient Diagnostics Base

5.4.7 EKF Diagnostics Acquires Quotient Diagnostics

5.4.8 EKF Diagnostics Acquires Stanbio Laboratories

5.4.9 Geonostics Acquires FlexSite’s Diagnostics

5.4.10 Trinity Biotech Signs Distribution Agreements with Fisher and Menarini Diagnostics

6.1 Drivers and Trends of Clinical HbA1c Testing

6.2 Healthcare Cost Controls

6.3 Affordable Care Act Excise Tax on Medical Devices

6.4 Changes in Patient Management

6.5 Regionalization of Laboratory Care

6.6 Satellite Facilities

6.7 Professional Point of Care Testing

6.7.1 Key Issues in the POC Diagnostic Testing Sector

6.7.2 Current Market Trends and Drivers

6.7.3 POC HbA1c

6.7.4 Effectiveness of POC

6.7.5 Key Customer Segments

6.8 Factors Affecting OTC Medical Product Distribution

6.9 Drivers and Restraints of OTC and Self-Testing HbA1c Markets

7. Regulatory Environment and Insurance Reimbursements

7.1 U.S. Government Regulation of Medical Devices

7.2 E.U. Regulation of Medical Devices

7.3 FDA Labeling Requirements

7.4 Clinical Laboratory Improvement Act (CLIA)

7.5 HbA1c Testing Insurance Coverage and Reimbursement

7.6 Managed Care

8. Company Profiles
INDEX OF FIGURES

Figure 2.1: Worldwide Diabetes Cases, 2013 and 2035 14
Figure 2.2: Worldwide Prevalence of Diabetes (%) in Adults (20-79 Years), 2013 15
Figure 2.3: Annual Number of New Cases of Diagnosed Diabetes Among U.S. Adults Aged 18-79 Years, 1980-2011 19
Figure 2.4: New Cases of Diabetes Diagnosed in the U.S. Adult Population by Age, 2010 19
Figure 2.5: Prevalence of Diabetes by Age in the U.S., 2010 20
Figure 2.6: Diagnosed Diabetes by Age in the U.S., 2013 20
Figure 2.7: Number of Deaths from Diabetes by Age in the U.S., 2010 22
Figure 2.8: Number of Diabetes Deaths by Race and Sex in the U.S., 2010 23
Figure 2.9: Maintenance of Normal Blood Sugar Levels 24
Figure 2.10: Prevalence of Self-Reported Obesity (BMI ≥30) Among U.S. Adults, 2012 27
Figure 2.11: Prevalence of Obesity Among Adults in the U.S., 2009-2010 28
Figure 2.12: Trends in Obesity Among Children and Adolescents in the U.S., 1988-2010 28
Figure 2.13: Age-Adjusted Percentage of People with Diabetes Aged 35 Years or Older Reporting Heart Disease or Stroke, by Sex, in the U.S., 1997-2011 30
Figure 2.14: Percentage of Adults with Diagnosed Diabetes Reporting Any Mobility Limitation, by Age, in the U.S., 1997-2011 32
Figure 2.15: Number (in Millions) of Adults Aged 18 Years or Older with Diagnosed Diabetes Reporting Visual Impairment, in the U.S., 1997-2011 33
Figure 2.16: Mean Diabetes Healthcare-Related Expenditures Per Adult (20-79 Years) with Diabetes (in U.S. Dollars), 2013 38
Figure 2.17: How Diabetes Dollars are Spent in the U.S., 2012 40
Figure 3.1: Worldwide HbA1c Testing Market, 2010-2019 45
Figure 3.2: U.S. HbA1c Testing Market, 2010-2019 46
Figure 3.3: Global HbA1c Self-Testing Market, 2010-2019 47
Figure 4.1: Non-Enzymatic Glycation of Hemoglobin 54
Figure 4.2: Boronate Affinity Binding of Glycated Protein 56
Figure 4.3: Comparison of HbA1c and Blood Glucose Measurements Over a Four-Day-Period 61
Figure 4.4: Range of Variation in HbA1c Assay 67
INDEX OF TABLES

Table 2.1: Regional Estimates of the Number of Diabetes (20-79 Years) in Millions, 2013 and 2035 15
Table 2.2: Countries with the Largest Numbers of Diabetics, 2013 16
Table 2.3: Countries with the Largest Estimated Numbers of Diabetics, 2035 16
Table 2.4: Worldwide Undiagnosed Diabetes in Adults (20-79 Years) by Region and Income Group, 2013 17
Table 2.5: Countries with the Largest Number of Deaths Attributable to Diabetes, 2013 17
Table 2.6: U.S. Population of Diagnosed Diabetics Aged 20-79 Years, 2013 20
Table 2.7: Percentage of U.S. Adults with Diagnosed Diabetes by State, 2010 21
Table 2.8: Ten Leading Diagnoses for Co-Morbid Chronic Diseases in the U.S. 30
Table 2.9: Odds Ratio of Progression to Complications Associated with Type 2 Diabetes 31
Table 2.10: Prevalence of Complications Among Patients with Diabetes 31
Table 2.11: Novel Risk Factors and Possible Mechanisms of the Excess Risk of Coronary Heart Disease in Type 2 Diabetes Mellitus 32
Table 2.12: Major Causes of End-Stage Renal Disease 32
Table 2.13: Clinical Recommendations for Adults with Diabetes 34
Table 2.14: Laboratory Assessment of Diabetic Vascular Disease 34
Table 2.15: Average Years Gained Free of Diabetes-Related Disease with Intensive Management 34
Table 2.16: Estimated Direct and Indirect Costs of Major Cardiovascular Diseases and Stroke in the U.S., 2010 36
Table 2.17: Cost of Diagnosed Diabetes in the U.S., 2012 39
Table 2.18: Annual Cost of Care of United Healthcare Adult Members with Diabetes, 2009 41
Table 2.19: Healthcare Utilization by Diabetic Patients, 2012 41
Table 3.1: Worldwide HbA1c Testing Market, 2010-2019 44
Table 3.2: U.S. HbA1c Testing Market, 2010-2019 46
Table 3.3: Global HbA1c Self-Testing Market, 2010-2019 47
Table 3.4: Key Players in the HbA1c Clinical Laboratory Market 48
Table 3.5: Key Players in the HbA1c POC Market 49
Table 3.6: Key Players in the HbA1c Self-Testing Market 49
Table 3.7: Key Market Drivers for HbA1c Testing 51
Table 4.1: Summary of the 2010 Consensus Statement on the Worldwide Standardization of HbA1c 59
Table 4.2: Advantages of HbA1c versus Blood Glucose Testing 60
Table 4.3: Disadvantages of HbA1c versus Blood Glucose Testing 61
Table 4.4: HbA1c Testing Recommendations 62
Table 4.5: Criteria for the Diagnosis of Diabetes 63
Table 4.6: Categories of Increased Risk for Diabetes (Pre-Diabetes) 63
Table 4.7: Glycemic Recommendations for Non-Pregnant Adults with Diabetes 65
Table 4.8: Glycemic Recommendations for Women with Gestational Diabetes 65
Table 4.9: Glycemic Recommendations for Pregnant Women with Pre-Existing Diabetes 65
Table 4.10: Conditions Known to Interfere with HbA1c Assays 68
Table 4.11: Interference from Hb Variants in Select HbA1c Testing Systems 70
Table 4.12: History of NGSP Manufacturer Certification Criteria 71
Table 4.13: Correlation of HbA1c with Mean Blood Glucose 72
Table 5.1: HbA1c Testing Devices and Assays on the Market 73
Table 5.2: Premier Hb9210 Placements Worldwide, 2012-2014 87
Table 7.1: Financial Comparison for Moderate and Waived CLIA Labs 111
1. Overview

1.1 Statement of Report

The global prevalence of diabetes mellitus continues to increase rapidly, with more than 382 million diabetics worldwide. By 2035, experts predict that the number of people with diabetes will soar to 592 million. The dramatic increase in the incidence of diabetes worldwide has been exacerbated by the growing obesity problem across the globe. Once thought of as primarily a childhood disease—sometimes referred to as juvenile diabetes, now mostly Type 1 diabetes—the obesity crisis linked to the adoption of a high-fat, high-carbohydrate, and high calorie American diet has resulted in skyrocketing rates of diabetes, particularly Type 2 diabetes, among adults across the world.

As such, the global market for diabetes testing products is undergoing a significant transition driven by the advent of new analytical technologies and developments in diabetes treatment. Hemoglobin A1c (HbA1c) testing is the most recent major technology to have entered the diabetes testing market, and has made great strides in gaining acceptance over the past 20 years. It is now an essential assay in the diabetes testing repertoire. Its clinical utility and improvements in its accuracy and implementation of standardized protocols have translated into continued strong market growth.

The purpose of this TriMark Publications report is to describe the specific market segment that encompasses hemoglobin A1c testing for diagnosing and monitoring diabetes. This study reviews all of the generally-accepted clinical analytical methods that are currently in use today for measuring HbA1c levels. Moreover, it examines clinical measurement devices and reagents as utilized in hospitals, clinics, doctor’s offices and at-home care locations. This report also provides an update on the new guidelines and parameters for the use of HbA1c.

1.2 About This Report

The main objectives of this analysis are:

- Identifying viable technology drivers through a comprehensive look at platform technologies for HbA1c testing for diabetes management.
- Understanding the different sectors of the HbA1c testing space, such as the home self-testing and the professional glucose testing segments.
- Obtaining a complete understanding of the individual HbA1c testing platforms, from their basic principles to their clinical applications.
- Discovering feasible market opportunities by identifying high-growth applications in different analytical diagnostic areas.
- Focusing on global industry development through an in-depth analysis of the world market for HbA1c measurement technology, including growth forecasts.
- Presenting market figures regarding the current value of HbA1c testing, market projections, market share, key players and sector growth rates.
- Providing a detailed analysis of each of the major device categories.

This analysis defines the dollar volume of market sales, both worldwide and in the U.S., and analyzes the factors that influence the size and the growth of the market segments. Key questions answered in this examination include:

- How can HbA1c measuring tools and technologies facilitate improved diabetes patient care?
- What are the main types of HbA1c testing technologies that are currently available?
- Who are the current key players in this marketplace?
- Which HbA1c testing market areas have the greatest potential for growth?
- What is the current state of the HbA1c testing market?
- Which diagnostic companies are investing in new HbA1c testing technology platform solutions?
- What are the main business strategies adopted by leading HbA1c testing companies?
- What are the benefits of various HbA1c testing technology platforms?
- How does HbA1c testing compliment the existing diabetes testing platforms?
Additionally, this study contains:

- Detailed analysis of recent trends in the HbA1c testing marketplace.
- In-depth profiles of the leading companies with HbA1c testing tools and technologies.
- Perspectives of the HbA1c testing industry from leading industry experts.
- Analysis of potential new HbA1c testing applications in the clinical sector as they pertain to diabetes management.
- Market predictions and trends analysis concerning U.S. expenditures on HbA1c testing solutions.
- Projections of HbA1c testing market size for the global market.
- Review of commercial HbA1c testing business strategies such as co-branding.

Analysis includes charts and graphs measuring product growth and trends within the marketplace. Company-specific information—including sales figures, product pipeline status, and research and development (R&D) trends—is provided. Also, this review includes:

- Assessment of HbA1c testing market drivers and bottlenecks, from medical and scientific community perspectives.
- Discussions on the potential benefits of HbA1c testing for various sectors of the medical and scientific community, as they relate to diabetes management.
- The current total market size and future growth of the HbA1c testing market.
- Current and forecasted market shares by companies.
- Discussions on profit and business opportunities by segments.
- Strategic recommendations for near-term business opportunities.
- Analysis of the current commercial uses of HbA1c testing.

The following questions will also be addressed in this report:

- What are the near-term business opportunities in the HbA1c testing market?
- How will manufacturers, researchers, physicians and patients influence diabetes management?
- What are the drivers and bottlenecks influencing the HbA1c testing market?
- What are the barriers to entry for the HbA1c testing market?
- What are the key technologies used in HbA1c testing?
- Who holds the proprietary rights to the HbA1c testing market technology platforms?
- How is this technology currently being applied and utilized?
- In the U.S., what regulatory processes apply to HbA1c testing technologies?
- How will new HbA1c testing technologies change diagnostic screening/testing paradigms and decrease costs of patient care?
- How will new HbA1c testing technologies reduce healthcare expenditures and affect R&D spending?

1.3 Scope of the Report

This analysis emphasizes companies that are actively developing and marketing instrumentation and reagents for performing HbA1c tests. Specific attention is paid to the clinical market segment and, separately, to the instruments, reagents and supplies marketed by major companies for the point of care and home self-testing markets for diabetes management. Market size, growth rates and market components for instruments and reagents used in this area are also analyzed. Activity and trends in research, including patterns of information processing in array testing instruments, are addressed. Also discussed are trends that have stimulated this market, the numbers of institutions that use HbA1c testing and the factors that influence purchasing.

This report surveys all companies known to be marketing, manufacturing or developing instruments and reagents for the HbA1c testing market, for each of the major market segments of professional glucose testing, and self-monitoring of blood glucose. There are also sections on the companies’ histories, product lines, business and marketing analyses, and a subjective commentary on the key companies’ market positions. In-depth analysis of
diabetes management and glucose self-testing can be found in other TriMark Publications reports at www.trimarkpublications.com, such as TriMark’s *Diabetes, Metabolic Syndrome and Cardiovascular Disease, U.S. Glucose Testing Markets, Point of Care World Testing Markets* and *World Glucose Self-Testing Markets*.

1.4 Methodology

The author of this report holds a Master’s in immunology and has substantial experience in science writing and as a medical industry analyst. She also has many years of laboratory experience and has conducted laboratory testing and instrument and reagent development for biotech companies. The senior editor of this report holds a Ph.D. in biochemistry from the University of Minnesota and has had post-doctoral experience at the University of Connecticut School of Medicine. He has taught at Quinnipiac University and the Tufts School of Medicine, and has been a senior scientist at Pfizer Pharmaceutical Laboratories in drug development and diagnostic testing. He also has many decades of experience in science writing and as a medical industry analyst. He has over 30 years of experience in laboratory testing and instrument and reagent development technology as a licensed clinical laboratory director, as well as extensive experience in senior level management positions in biotech and medical service companies. He holds several patents on *in vitro* glucose testing.

Company-specific information is obtained mainly from industry trade publications, academic journals, news and research articles, press releases and corporate websites, as well as annual reports for publicly-held firms. Additionally, sources of information include the non-governmental organizations (NGOs) such as the World Health Organization (WHO), governmental entities like the U.S. Department of Health and Human Services (HHS), and U.S. federal agencies such as National Institutes of Health (NIH), Food and Drug Administration (FDA) and the Centers of Disease Control and Prevention (CDC). Where possible and practicable, the most recent data available have been used.

Some of the statistical information was taken from Biotechnology Associates’ databases and from TriMark’s private data stores. The information in this study was obtained from sources that we believe to be reliable, but we do not guarantee the accuracy, adequacy or completeness of any information or omission or for the results obtained by the use of such information. Key information from the business literature was used as a basis to conduct dialogue with and obtain expert opinion from market professionals regarding commercial potential and market sizes. Senior managers from major company players were interviewed for part of the information in this report.

Primary Sources

TriMark collects information from hundreds of Database Tables and many comprehensive multi-client research projects, as well as Sector Snapshots that it publishes annually. TriMark extracts relevant data and analytics from its research as part of this data collection.

Secondary Sources

TriMark uses research publications, journals, magazines, newspapers, newsletters, industry reports, investment research reports, trade and industry association reports, government-affiliated trade releases and other published information as part of its secondary research materials. The information is then analyzed and translated by the Industry Research Group into a TriMark study. The Editorial Group reviews the complete package with product and market forecasts, critical industry trends, threats and opportunities, competitive strategies and market share determinations.

TriMark Publications Report, Research and Data Acquisition Structure

The general sequence of research and analysis activity prior to the publication of every report in TriMark Publications includes the following items:

- Completing an extensive secondary research effort on an important market sector, including gathering all relevant information from corporate reporting, publicly-available data and proprietary databases.
- Formulating a study outline with the assigned writer, including important items, as follows:
• Market and product segment grouping, and evaluating their relative significance.
• Key competitors’ evaluations, including their relative positions in the business and other relevant facts to prioritize diligence levels and assist in designing a primary research strategy.
• End-user research to evaluate analytical significance in market estimation.
• Supply chain research and analysis to identify any factors affecting the market.
• New technology platforms and cutting-edge applications.

• Identifying the key technology and market trends that drive or affect these markets.
• Assessing the regional significance for each product and market segment for proper emphasis of further regional/national primary and secondary research.
• Completing a confirmatory primary research assessment of the report’s findings with the assistance of expert panel partners from the industry being analyzed.

1.5 Executive Summary

Hemoglobin A1c (HbA1c) assays have been on the market for over 20 years, and it has become the primary test for monitoring long-term glycemic control. HbA1c is also consistently used to adjust therapy, assess quality of care, and predict risk for the development of complications. Moreover, HbA1c levels are now accepted as a diagnostic indicator of diabetes. The value of diabetes diagnostic and disease management tools, including the HbA1c assay, increases as the global incidence of diabetes increases.

Worldwide, there are about 382 million diabetics according to the International Diabetes Federation (IDF). Due to rising rates of obesity and increased lifespan, the prevalence of diabetes is on the rise. By 2035, the global incidence of diabetes is expected to increase more than 50%, afflicting 592 million people worldwide. Despite this large patient population, the IDF estimates that, even now, only 50% of Type 2 diabetics have been diagnosed in the worldwide population. In light of this staggering worldwide prevalence of diabetes mellitus, there is increasing demand for effective monitoring of blood glucose and tight glucose control to delay disease progression, prevent diabetic complications and improve the quality of life for patients. Around 5.1 million deaths are attributed to health complications arising from diabetes every year. The World Health Organization predicts that diabetes will become the seventh leading cause of death in the world by 2030. The ten countries containing the largest population of diabetic patients are: China, India, the U.S., Brazil, Russia, Mexico, Indonesia, Germany, Egypt and Japan. There are currently an estimated 25.8 million people in the U.S. afflicted with diabetes (men 11.8%, women 10.8%, non-Hispanic black 18.7%, non-Hispanic whites 10.2%). An estimated 1.9 million new cases of diabetes are diagnosed each year in the U.S.

The results of the landmark Diabetes Control and Complications Trial (DCCT) and its continuation as the Epidemiology of Diabetes Interventions and Complications (EDIC) Trial, as well as the United Kingdom Prospective Diabetes Study (UKPDS), conclusively demonstrated that intensive glycemic control significantly reduces the risk of long-term diabetes complications. Researchers were then able to use the data collected from these studies to establish HbA1c goals based on observed increases in diabetes-related complications. For example, the American Diabetes Association (ADA) recommends that HbA1c levels be routinely obtained in all patients with diabetes at least two to four times per year and that non-pregnant adults should aim for HbA1c levels <7%. More recently, the ADA recommended using HbA1c levels at >6.5% to diagnose diabetes and at 5.7% to 6.4% as an indication of increased risk for diabetes.

These new recommendations, along with the steadily growing point of care (POC) HbA1c market segment, are key factors contributing to the solid performance of HbA1c market. The total worldwide HbA1c testing market was valued at approximately $715 million in 2013 and is projected to reach over $1.1 billion by 2019, with a compound annual growth rate (CAGR) of 8.9%. This includes both the point of care (POC) testing in doctors’ offices and hospitals and testing within central laboratories. The POC segment occupies approximately 28% of the total HbA1c market and is one of the fastest growing areas, with a CAGR of 10.8% between 2013 and 2019. Laboratory based HbA1c testing continues to exhibit strong growth and is expected to increase from $515 million in 2013 to $820 million by 2019, with a CAGR of 8.1%. The total U.S. HbA1c testing market was valued at $365 million in 2013 and is projected to reach $583 million by 2017, with a CAGR of 8.1%.
The recent attention on setting optimal HbA1c thresholds for diabetes treatment and diagnosis has highlighted the need for clinical labs to have accurate and reliable methods to measure the HbA1c levels. Advances in global harmonization of the HbA1c assay and increased standards of quality have revolutionized the HbA1c testing market within the past decade. HbA1c assays should have acceptable performance, standardization to the national reference (National Glycohemoglobin Standardization Program, NGSP), and NGSP certification. Further improvements in POC HbA1c assays will enable them to be used to quickly and accurately diagnose diabetes. The ability to repeatedly produce accurate results is the key to the widespread adoption of HbA1c tests as screening assays in the future.

Additional recommendations include:

- Focusing diagnostic development on the significant and largely untapped global market that exists by creating more effective and affordable tests to manage diabetes.
- Developing more accurate and reliable HbA1c monitoring devices to take advantage of the increasing numbers of nursing home and other professional healthcare settings that are utilizing POC products.