TABLE OF CONTENTS

1. Overview 14
 1.1 Statement of Report 14
 1.2 About This Report 14
 1.3 Scope of the Report 14
 1.4 Objectives 14
 1.5 Methodology 16
 1.6 Executive Summary 17

2. Introduction: Companion Diagnostics in Drug Development 25
 2.1 Companion Diagnostics as Biomarkers 26
 2.1.1 Potential Benefits of Biomarkers as Companion Diagnostics 28
 2.2 Biomarkers in Different Phases of Drug Development 28
 2.2.1 Drug Discovery and Development Process 28
 2.2.2 Biomarkers in Drug Development 30
 2.3 Drug Targets 31
 2.3.1 Target Discovery Using Functional Genomics 34
 2.3.2 Functional Genomics 35
 2.3.3 Target Validation 36
 2.3.3.1 Target Discovery 37
 2.3.3.2 Lead Identification 37
 2.3.4 Target and Biomarker Discovery 37
 2.3.4.1 Biomarker Validation 38
 2.4 Biomarkers in Drug Discovery, Development and Clinical Diagnostics 38
 2.4.1 Role of Biomarkers in Drug Discovery, Preclinical, Clinical Development and Diagnostics 38
 2.4.2 The Pipeline Problem 40
 2.4.3 Biomarkers in the Drug Discovery Process 41
 2.4.4 Segmentation of Biomarker Usage 42
 2.4.5 Efficacy of Biomarkers as Surrogate Endpoints 42
 2.4.6 Biomarkers Used to Reduce the Cost of Drug Development 43
 2.4.7 Biomarkers: Challenges and Opportunities 43
 2.4.8 Biomarkers in Early Safety and Toxicity Assessment 44
 2.4.9 Biomarkers in Determining Validation Parameters 44
 2.4.10 Challenges in Development of Biomarkers 45
 2.4.11 Using Biomarkers in Early Clinical Development 45
 2.4.12 Translational Biomarkers 45
 2.4.13 Use of Biomarkers in “Go”/“No-Go” Decisions 46
 2.4.14 Diagnostic Tests 46
 2.4.15 Biomarkers in Deal Making 46
 2.4.16 Payors Use Biomarkers in Decision-Making 47
 2.5 World Pharmaceutical Markets 47
 2.5.1 World Market Summary 47
 2.5.2 Forces Affecting the Structure of the Pharmaceutical Industry 51
 2.5.2.1 Threats 52
 2.5.2.2 Competitive Forces 52
 2.6 Companion Diagnostics Market Opportunity 53
 2.6.1 Industry Overview 53
 2.6.1.1 Pharmaceutical Industry Drug Pipeline 54
 2.6.1.2 Asia-Pacific to Replace U.S. and Europe as Pharmaceutical Industry Center 64
 2.6.1.3 The Changing Pharmaceutical Business Model 65
 2.6.2 Benefits for Companion Diagnostic Tests in Drug Development 65
 2.6.3 Strategies for the Creation of Partnerships—Predicting and Overcoming Challenges in Creating Drug Response Profiling Diagnostics 67
 2.6.4 Options and Applications 68
 2.6.4.1 Clinical Applications of Genomics: The Use of Evidence-Based Frameworks by Decision-Makers 68
2.6.5 Challenges, Drivers and Trends 68
2.6.5.1 Macro Trends in Biomarkers 69
2.6.5.2 Biomarkers: Industry SWOT Analysis 72
2.6.6 Collaboration for Companion Diagnostics 72
2.6.7 Key Stake Holders in Companion Diagnostics 73
2.7 Impact of CDx/PM on Drug Clinical Trials 75
2.8 Evolving Business Models in Companion Dx and Personalized Medicine 76
2.9 Current Pharma/Dx Business Model Examples 76
2.10 Future Developments 76

3. Biomarker Development Tools 78
3.1 New Technologies in Functional Genomics 78
3.1.1 Genomics-Derived Drug Pipeline 78
3.1.2 Future of Genomics Technologies for Drug Target Identification 78
3.2 Overview of Microarrays 79
3.2.1 General Theory of Microarrays 80
3.2.2 GeneChip Probe Array Technology 81
3.2.3 DNA Microarrays 81
3.2.3.1 DNA Microarray Market Size 83
3.2.3.2 DNA Microarrays in SNP Analysis 84
3.2.3.3 DNA Microarrays in Cancer 85
3.2.4 Protein Microarrays 85
3.2.4.1 Reasons Why Researchers Use Protein Microarrays 86
3.2.4.2 Factors for Adoption of Protein Microarrays Technology 87
3.2.4.3 Future Innovations in Protein Microarray Technology 87
3.2.5 New Technologies 87
3.2.5.1 Antibody Microarrays 87
3.2.5.2 Peptide Microarrays 88
3.2.5.3 Peptide MHC Microarrays 88
3.2.5.4 Tissue Microarrays 88
3.2.5.5 Key Points for Developing Microarray-Based Applications 89
3.2.5.6 Reasons Why Researchers use DNA Microarrays 89
3.2.5.7 Factors for Difficulties Applying DNA Microarrays Technology 90
3.2.5.8 Emerging Microarray Trends 91
3.2.5.9 Emerging Microarray Applications 91
3.2.5.10 Key Findings on Use of Microarrays 92
3.2.5.11 Advantages and Drivers of Microarrays 92
3.2.5.12 Limitations and Barriers to Use of Microarrays 94
3.2.5.13 qRT-PCR Use in Biomarker Identification and Drug Development 96
3.2.5.14 Microarray Quality Control (MAQC) Project 97
3.3 Theranostics 97
3.3.1 Theranostics in Drug Development 97
3.3.2 Trends in Theranostics 97
3.3.3 Timeline for Impact on Various Segments in Theranostics 98
3.3.4 Challenges for Biomarker-Based Therapeutics Development 99
3.4 Pharmaceutical Development and Bioanalytical Services 100
3.4.1 Wyeth (now part of Pfizer) Singulex’s Erenna 101
3.5 Metabolomics in Drug Discovery 101
3.6 Bioinformatics 102
3.6.1 Definition and Role of Bioinformatics 103
3.6.2 Bioinformatics Sector Overview 105
3.6.3 Future Status of Bioinformatics 106
3.6.3.1 Future in Drug Discovery 106
3.6.3.2 Mergers and Acquisitions could Deter Bioinformatics Growth 106
3.6.3.3 Barriers to Bioinformatics Growth 106
3.6.3.4 Types of Data and Bioinformatics Applications 106
3.6.3.5 Validated Core Modeling Technology 108
3.6.3.6 Applicability of Bioinformatics for Biomarker Discovery 108
3.6.3.7 Biomarker Data Management Compliant with Industry Standards 108
3.6.3.8 Data Management for Biomarkers 108
3.6.3.8.1 Data Transformation for Biomarker Development 108
3.6.3.8.2 Biomarker Data Collaboration 108
3.6.3.8.3 Interface for Online Data Sources for Genomic Structures 109
3.6.3.8.4 Target Markets for Informatics Software 109
3.6.3.8.5 Bioinformatics Drivers and Challenges in the Pharmaceutical Industry 110
3.6.3.8.6 Products of Bioinformatics 112
3.6.3.8.7 Informatics Tools and Functionalities 113
3.6.3.8.8 Bioinformatics in Lead Identification and Optimization 114
3.6.3.8.9 Bioinformatics in Drug Development and Formulation 114
3.6.3.8.10 Role of Bioinformatics in the Drug Discovery Value Chain 114
3.6.3.8.11 Bioinformatics Software for Drug Discovery and Biomarker Development 115
3.6.3.8.12 Bioinformatics Services 116
3.7 Biomarkers and Proteomics 117
3.7.1 Scientific Background 118
3.7.2 Applying Proteomics to Biomarker Discovery 118
3.7.2.1 Challenges Facing Biomarker Developers 119
3.7.3 Limitations of Proteomic Approaches to Biomarker Discovery 121
3.7.4 Validation of Biomarkers Using LC-MS/MS Systems 121
3.7.5 Use of Mass Spectrometry in Biomarker Discovery 122
3.7.5.1 Multiple Reaction Monitoring Assays (MRMs) 123
3.7.5.2 Gel-Based Approaches 123
3.7.5.3 Non-Gel-Based Approaches 123
3.7.5.4 SELDI-TOF MS 123
3.7.5.5 SELDI and Prognosis 124
3.7.5.6 SELDI and Treatment Monitoring 124
3.7.5.7 Limitations of Mass Spectroscopy 125
3.7.6 Partnerships for Developing Proteomic Biomarkers 126
3.7.7 Proteomics in Developing a New Cancer Marker 127
3.7.7.1 Translating Proteomic Oncology Discoveries to the Clinic: Development of Analytical Reference Materials, Reagents, Data, and Technology Assessment and Validation 127
3.7.7.2 Challenges of Discovering and Validating Clinical Protein Biomarkers 128
3.7.7.3 Importance of Proteomics in Biomarker Discovery 128
3.8 Toxicogenomics 128
3.8.1 Toxicogenomics Concerns in Drug Safety Data 129
3.8.2 Toxicogenomics and Prioritization of Drug Candidates 129
3.8.3 Genomic Biomarkers for Drug-Induced Nephrotoxicity 130
3.8.4 Use of Biomarkers of Drug-Induced Cardiotoxicity 130
3.8.5 Use of Biomarkers of Drug-Induced Hepatotoxicity 130
3.8.6 Transgenic Biomarkers for Adverse Drug-Drug Interactions 130
3.8.7 Challenges to Toxicogenomics 130
3.8.8 The Future Use of Toxicogenomics in Drug Discovery 131

4. Market for Biomarkers in Drug Development 132
4.1 C-KIT (CD117) Expression 136
4.2 CCR5 -Chemokine C-C Motif Receptor 136
4.3 CYP2C19 Variants 136
4.4 CYP2C9 Variants 137
4.5 CYP2D6 Variants 137
4.6 CYP2D6 Variants with Alternate Context 137
4.7 Clinical Biomarkers 138
4.8 Targeting Kidney Toxicity 138
4.8.1 Proximal and Distal Tubular Injury (Alpha-GST and Pi-GST) 139
4.8.2 Collecting Duct and Loop of Henle Injury (RPA-1 and RPA-2) 139
4.8.3 Glomerular Injury (Collagen IV) 139
4.8.4 KIM-1 140
4.9 Targeting Hepatotoxicity 140
4.9.1 Breast Cancer 141
4.9.2 Colorectal Cancer 142
4.9.3 Prostate Cancer 142
4.9.4 Cystic Fibrosis 142
4.10 Biomarker Application in Oncology Clinical Development 142
4.10.1 Specific Example of Companion Biomarkers in Clinical Oncology 148
4.10.2 Integration of a Companion Diagnostic Strategy into Oncology Drug Development 148
4.10.2.1 Lilly to Co-Develop Companion IVDs for Cancer Drugs 148
4.10.2.2 Galena Biopharma and Leica Biosystems Announced a Partnership to Develop a Companion Diagnostic for HER2 Screening in Women with Breast Cancer 149
4.10.2.3 bioMérieux and Ipsen Sign Theranostics Agreement to Develop Companion Test for New Breast Cancer Treatment 149
4.10.2.4 Life Technologies to Partner with Bristol-Myers Squibb for Companion Diagnostics Development 149
4.10.2.5 Ventana Medical Systems and the Critical Path Institute 149
4.10.2.6 Siemens Forms New Companion Diagnostics Partnerships with Viiv Healthcare and Tocagen 149
4.10.2.7 Biomarkers in Development 150
4.10.2.8 Epigenomics’ Methylation Biomarker Septin 150
4.10.2.9 Quest Diagnostics and Lab Corp Develop IL 28-B Test for Hepatitis C 150
4.10.2.10 NSLC Patients with EGFR Mutation 151
4.10.2.11 A Personalized Medicine Program for Chronic Myeloid Leukemia 151
4.10.2.12 Clarient Adopts Qiagen KRAS 151
4.11 Targeting Diabetes-Related Heart Disease 151
4.12 Key Challenges and Opportunities in Developing Targeted Therapeutics 152

5. Imaging Biomarkers in Drug Discovery 153
5.1 Introduction 153
5.1.1 Validation of Imaging Biomarkers 153
5.1.2 Types of Imaging Used in Drug Development 153
5.1.3 Development of Imaging Technologies 154
5.2 Molecular Imaging 154
5.2.1 Use in Drug Discovery 154
5.2.2 Use in Clinical Applications 154
5.2.3 Use in Clinical Trials 154
5.2.4 Cell-Based Screening Technologies in Drug Development 154
5.2.5 Optical Biomarkers 155
5.3 Magnetic Resonance Imaging 155
5.4 Positron Emission Tomography 155
5.5 FDG-PET Patient Phase I Studies 156
5.6 Imaging Biomarkers as Study Endpoints 157
5.6.1 Oncology 157
5.6.2 Parkinson’s Disease 157
5.6.3 Cardiac Disease 157
5.7 IT Solutions for Imaging Biomarkers in Biopharmaceutical R&D 159

6. Clinical Biomarkers Improving Trial Design 160
6.1 Strategies to Improve the Measurement of Biomarkers for Drug Trials 160
6.2 Key Opportunities in Biomarker Discovery, Development and Commercialization 160
6.2.1 Contract Research Companies 160
6.3 What Strategies Help Translate Biomarkers from Preclinical to Clinical Development? 162
6.4 How Should Biomarker Data be Compared to “Traditional” Safety and Efficacy Data? 162
7. Biomarkers as Surrogate Endpoints 164
7.1 What is a Surrogate Endpoint? 164
7.2 Benefits and Drawbacks of Surrogate Endpoints 164
7.2.1 Benefits 164
7.2.2 Drawbacks 164
7.3 Improving the Efficacy of Clinical Surrogate End Points Using Biomarkers 164
7.4 Surrogate Endpoint Validation 165
7.5 Effective Use of Surrogates 165
7.5.1 FDG-PET as a Surrogate Endpoint in Oncology Studies 165
7.6 Conclusions 165

8. Market Size, Collaborations and Future Directions for Companion Diagnostics in Drug Development 166
8.1 Strategies to Improve the Measurement of Biomarkers for Drug Trials 166
8.1.1 Key Opportunities in Biomarker Discovery, Development and Commercialization 166
8.1.2 The Rationale Behind Biomarker Strategy 166
8.1.3 New Development Strategies and their Implications for Deal Making 167
8.1.4 How Biomarkers are being Used to Reduce Attrition in Development 168
8.1.5 Combined Therapeutics and Diagnostics Biomarker Business Makes Sense 168
8.1.6 Use of Biomarkers In House or Partner with a Diagnostics Company 168
8.2 What is the Best Balance of Resources to have the Most Efficient Pathway to Develop Biomarkers? 168
8.3 Current and Future Trends in Drug Development 169
8.4 Future Role of Biomarkers in Healthcare 169
8.5 What are the Current Organizational Obstacles in Biomarker Implementation? 170

9. Regulatory Issues for Biomarkers in Drug Development 171
9.1 Introduction 171
9.1.1 Role of Regulatory Agencies in Development of Biomarkers 172
9.2 FDA Perspective of Biomarkers in Clinical Trials 173
9.2.1 FDA as a Gatekeeper of Companion Biomarkers 173
9.2.2 FDA Criteria for a Valid Biomarker 173
9.2.3 FDA Product Submission and Review Process 174
9.2.4 FDA Pipeline for Biomarker Tests 175
9.2.5 Adaptive Clinical Trial Design 175
9.2.6 Orphan Drug Act and Biomarkers: Options and Opportunities 175
9.3 Role of StaRT-PCR™ in Increasing Value of Pharmacogenomic Data 176
9.4 Supporting IND, NDA and BLA Submissions 177
9.5 Performance Characteristics of Biomarker Tools 179
9.6 Biomarker Initiative and VGDs 181
9.7 Biomarker Qualification Pilot Process at the FDA 181
9.7.1 Introduction 181
9.7.2 Biomarker’s Validity 182
9.7.3 Biomarker Qualification Process Map 182
9.7.4 Biomarker Qualification Pilot Process 183
9.7.5 The Pipeline Problem 184
9.7.6 FDA Critical Path 185
9.7.6.1 Challenge and Opportunity on the Critical Path to New Medical Products 186
9.7.6.2 The NIH Roadmap 187
9.7.6.3 Predictive Safety Testing Consortium 187
9.7.6.4 FDA Risk-Based Approach 187
9.7.6.5 Examples of Drugs being Held up Due to Lack of Compliance with FDA Directives 187
9.7.7 Negotiating the Critical Path 187
9.7.8 Technical Dimensions Along the Critical Path 188
9.7.9 Product Development Toolkit 189
9.7.10 Tools for Assessing Safety 190
9.7.11 Tools for Demonstrating Medical Utility 192
9.7.12 Tools for Manufacturing 195
9.7.13 Orphan Products Grant Program 196
9.7.14 Slowdown in New Medical Products 196
9.7.15 Factors Contributing to the Decline in New Product Applications 199
9.7.16 Factors that Cause Unnecessary Delays in New Product Approvals 201
9.7.17 Reducing Avoidable Delays in Time to Approval 202
9.7.18 Reducing Delays in Medical Device Reviews 203
9.7.19 Reducing Delays in Animal Drug Reviews 204
9.7.20 Quality Systems Approach to Medical Product Review 204
9.7.20.1 Instituting Quality Systems in Review of New Drugs and Biologics 205
9.7.20.2 Implementing of the Common Technical Document (CTD) and the Electronic CTD 205
9.7.20.3 Implementing Medical Device Quality Initiatives 206
9.7.21 Case Study: Nephrotoxicity Biomarkers 206
9.7.22 Role of the FDA 206
9.8 CMS Regulatory Responsibilities 207
9.9 Role of National Institute of Standards and Technology in Validation of Biomarkers 208
9.10 Biomarkers and FDA’s Voluntary Genomic Data Submission 208
9.11 Federal Health Oncology Biomarker Qualification Initiative 210
9.12 Orphan Drug Act and Pharmacogenomics: Options and Opportunities 211
9.13 Post-Market Covigilance Programs 212
9.14 Technology Options, Potential Diagnostic Partners and Regulatory Hurdles 212
9.15 What Regulatory Guidance is Needed for Companion Biomarkers? 213
9.16 U.S. Patent and Trademark Office (USPTO) 215
9.17 IRB Approval in Clinical Trials 215
9.18 Reimbursement and Value Creation 215
9.19 FDA Guidance Document on Co-Development 215
9.20 What is the Future Role of PBM’s in Laboratory Services 215
9.21 FDA Guidance Document on Co-Development 216

10.1 Advantages of a Pharmacogenomic Assessment of Biomarkers to Determine Clinical Dose 217
10.2 Key Opportunities in Biomarker Discovery, Development and Commercialization 217
10.3 What are the Current Obstacles in Biomarker Implementation in Clinical Medicine? 218
10.4 How do Business Strategies, such as Those Relating to Acquisition, Drive Biomarker Strategies? 219
10.5 What is the Right Balance Between Using External Partnerships and Developing Internal Infrastructure? 219
10.6 How might Novel Biomarker Development Lead to Acquisition Strategies and their Implications for Deal Making? 219
10.7 Which Types of Biomarkers should be Developed at Various Stages in the Drug Pipeline? 219
10.8 What Strategies Help Translate Biomarkers from Preclinical to Clinical Development? 219
10.9 In what Class of Drugs is the Value of Using Biomarkers in Decision Making the Highest? 220
10.10 Increased Clinical Trial Costs in Targeted Phase I Trials 221
10.11 How can Big Pharma Co-Develop Biomarkers in a Cost-Sharing Model for Regulatory Acceptance? 221
10.12 How are Biomarkers being Used to Reduce the Attrition Rate in Drug Development? 221
10.13 How is ROI Measured Using Biomarkers in Drug Development? 221
10.14 How might Organizational Structures Limit the Use of Biomarkers in Drug Development and how should R&D Organizations Address this Problem? 221
10.15 How to Maximize Business Development through Biomarker Strategies 222
10.16 What is the Best Type of Business Model for Developing Biomarkers? 222
10.17 What are Organizational Impediments Limiting the Use of Biomarkers in Drug Development? 222
10.18 What are Internal Capabilities for Novel Biomarker Development and Application? 222
10.19 How can Key Biomarker Technical Expertise be Applied Across a Complex and Highly-Stratified R&D Value Chain? 223
10.20 At what Stage of Drug Development have Biomarkers Provided the Most Benefit? 223
10.21 What Companies are the Most Innovative in Development of Biomarkers? 223
10.22 Best Values for Biomarkers in Drug Development and in Diagnostics 223
10.23 Companion Biomarkers can Increase Value in an Associated Drug 224
10.24 What is the Role of Governmental Agencies in Driving the Adoption of CDx? 224
10.25 What is the Role of the Insurance Industry in Driving the Adoption? 224
10.26 What is the Role of the Pharma Industry in Driving the Adoption of PGx? 224
10.27 What is the Role of the Diagnostic Industry in Driving the Adoption of PGx? 225

11. Company Profiles 226
11.1 Abbott Laboratories 226
11.2 Accelrys 229
11.3 Affymetrix 230
11.4 Agilent Technologies 233
11.5 Almac Diagnostics 236
11.6 Amgen 236
11.7 Ananomouse 238
11.8 Applied Maths 238
11.9 Ariadne Genomics 239
11.10 ArrayIt (Integrated Media Holdings) 239
11.11 AstraZeneca PLC 239
11.12 AutoGenomics, Inc. 241
11.13 Axontologic 241
11.14 Beckman Coulter (now part of Danaher) 241
11.15 Becton, Dickinson and Company (BD) 244
11.16 Bender MedSystems (Affymetrix) 245
11.17 Bioalma 246
11.18 BioAnalytics Group 246
11.19 Biocartis 246
11.20 Biocent Laboratories 247
11.21 BioChain, Inc. 248
11.22 BioData 248
11.23 BioDiscovery 248
11.24 Biodex 248
11.25 BioForce Nanosciences 249
11.26 BioGenex 250
11.27 Bioinformatics Solutions, Inc. 250
11.28 Biomax Informatics 250
11.29 bioMérieux 250
11.30 Biomind 251
11.31 Bio-Rad Laboratories, Inc. 251
11.32 BioSystems International (BSI) 252
11.33 Biotrin (DiaSorin) 253
11.34 BioWisdom (Instem Scientific Limited) 253
11.35 Bristol-Myers Squibb Company 253
11.36 Caliper Life Sciences (A PerkinElmer Company) 255
11.37 Caprion Proteomics 258
11.38 Carestream Health 259
11.39 Celera 259
11.40 Cepheid 262
11.41 Chang Bioscience 264
11.42 Clontech Laboratories 264
11.43 CombiMatrix Diagnostics 264
11.44 Compugen 266
11.45 Correlogic Systems, Inc. (Vermillion, Inc.) 268
11.46 Covance 268
11.47 Cybrdi 268
<table>
<thead>
<tr>
<th></th>
<th>Company Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.48</td>
<td>Cytogen Corporation (now EUSA Pharma)</td>
<td>268</td>
</tr>
<tr>
<td>11.49</td>
<td>Dako A/S (Agilent Technologies)</td>
<td>269</td>
</tr>
<tr>
<td>11.50</td>
<td>Decodon</td>
<td>270</td>
</tr>
<tr>
<td>11.51</td>
<td>Definiens</td>
<td>270</td>
</tr>
<tr>
<td>11.52</td>
<td>DiagnoSwiss</td>
<td>271</td>
</tr>
<tr>
<td>11.53</td>
<td>Discerna</td>
<td>271</td>
</tr>
<tr>
<td>11.54</td>
<td>DNAStar</td>
<td>272</td>
</tr>
<tr>
<td>11.55</td>
<td>DNATools</td>
<td>272</td>
</tr>
<tr>
<td>11.56</td>
<td>Eidogen-Sertanty</td>
<td>272</td>
</tr>
<tr>
<td>11.57</td>
<td>Electric Genetics Corporation</td>
<td>272</td>
</tr>
<tr>
<td>11.58</td>
<td>Eli Lilly and Company</td>
<td>273</td>
</tr>
<tr>
<td>11.59</td>
<td>Entelos</td>
<td>274</td>
</tr>
<tr>
<td>11.60</td>
<td>ePitope Informatics</td>
<td>274</td>
</tr>
<tr>
<td>11.61</td>
<td>Eurogentec</td>
<td>274</td>
</tr>
<tr>
<td>11.62</td>
<td>Exiqon A/S</td>
<td>275</td>
</tr>
<tr>
<td>11.63</td>
<td>Forensic Bioinformatics</td>
<td>275</td>
</tr>
<tr>
<td>11.64</td>
<td>Fujitsu</td>
<td>275</td>
</tr>
<tr>
<td>11.65</td>
<td>Future Diagnostics</td>
<td>276</td>
</tr>
<tr>
<td>11.66</td>
<td>Gene Codes</td>
<td>276</td>
</tr>
<tr>
<td>11.67</td>
<td>Genedata</td>
<td>276</td>
</tr>
<tr>
<td>11.68</td>
<td>GeneGo</td>
<td>276</td>
</tr>
<tr>
<td>11.69</td>
<td>Gene Network Sciences</td>
<td>277</td>
</tr>
<tr>
<td>11.70</td>
<td>Geneva Bioinformatics</td>
<td>277</td>
</tr>
<tr>
<td>11.71</td>
<td>Genomatica</td>
<td>277</td>
</tr>
<tr>
<td>11.72</td>
<td>Genomic Solutions</td>
<td>277</td>
</tr>
<tr>
<td>11.73</td>
<td>Genomining</td>
<td>278</td>
</tr>
<tr>
<td>11.74</td>
<td>GE Healthcare</td>
<td>278</td>
</tr>
<tr>
<td>11.75</td>
<td>GeneStudio, Inc.</td>
<td>278</td>
</tr>
<tr>
<td>11.76</td>
<td>Genomatix Software</td>
<td>279</td>
</tr>
<tr>
<td>11.77</td>
<td>GenomeQuest, Inc.</td>
<td>279</td>
</tr>
<tr>
<td>11.78</td>
<td>Genus BioSystems</td>
<td>279</td>
</tr>
<tr>
<td>11.79</td>
<td>Genzyme (Sanofi-Aventis)</td>
<td>279</td>
</tr>
<tr>
<td>11.80</td>
<td>Geospiza</td>
<td>279</td>
</tr>
<tr>
<td>11.81</td>
<td>GlaxoSmithKline PLC</td>
<td>280</td>
</tr>
<tr>
<td>11.82</td>
<td>Golden Helix</td>
<td>280</td>
</tr>
<tr>
<td>11.83</td>
<td>Grace Bio-Labs</td>
<td>280</td>
</tr>
<tr>
<td>11.84</td>
<td>Gyros AB</td>
<td>281</td>
</tr>
<tr>
<td>11.85</td>
<td>HealthCare IT</td>
<td>281</td>
</tr>
<tr>
<td>11.86</td>
<td>Hologic Gen-Probe</td>
<td>281</td>
</tr>
<tr>
<td>11.87</td>
<td>High Throughput Genomics</td>
<td>286</td>
</tr>
<tr>
<td>11.88</td>
<td>Human Genome Sciences (GSK)</td>
<td>286</td>
</tr>
<tr>
<td>11.89</td>
<td>Illumina, Inc.</td>
<td>287</td>
</tr>
<tr>
<td>11.90</td>
<td>Imagenex Corp.</td>
<td>288</td>
</tr>
<tr>
<td>11.91</td>
<td>Imaxia</td>
<td>288</td>
</tr>
<tr>
<td>11.92</td>
<td>INCOGEN, Inc.</td>
<td>288</td>
</tr>
<tr>
<td>11.93</td>
<td>Incyte</td>
<td>289</td>
</tr>
<tr>
<td>11.94</td>
<td>InforSense</td>
<td>289</td>
</tr>
<tr>
<td>11.95</td>
<td>Ingenuity Systems</td>
<td>289</td>
</tr>
<tr>
<td>11.96</td>
<td>InPharmix</td>
<td>290</td>
</tr>
<tr>
<td>11.97</td>
<td>Insightful Corporation</td>
<td>290</td>
</tr>
<tr>
<td>11.98</td>
<td>Integromics, S.L.</td>
<td>290</td>
</tr>
<tr>
<td>11.99</td>
<td>IBM</td>
<td>290</td>
</tr>
<tr>
<td>11.100</td>
<td>IO Informatics</td>
<td>292</td>
</tr>
<tr>
<td>11.101</td>
<td>Ipsen</td>
<td>292</td>
</tr>
<tr>
<td>11.102</td>
<td>Jerini AG</td>
<td>292</td>
</tr>
<tr>
<td>11.103</td>
<td>Johnson & Johnson</td>
<td>292</td>
</tr>
<tr>
<td>11.104</td>
<td>Koad Technology</td>
<td>293</td>
</tr>
<tr>
<td>11.105</td>
<td>KOPrime</td>
<td>293</td>
</tr>
<tr>
<td>11.106</td>
<td>Life Technologies Corporation</td>
<td>294</td>
</tr>
<tr>
<td>11.107</td>
<td>LINCO Research</td>
<td>296</td>
</tr>
<tr>
<td>11.108</td>
<td>Luminex</td>
<td>296</td>
</tr>
<tr>
<td>11.109</td>
<td>Marligen Biosciences</td>
<td>297</td>
</tr>
<tr>
<td>11.110</td>
<td>Matrix Science</td>
<td>298</td>
</tr>
<tr>
<td>11.111</td>
<td>MDS, Inc. (Nordion, Inc.)</td>
<td>298</td>
</tr>
<tr>
<td>11.112</td>
<td>Merck & Co., Inc.</td>
<td>298</td>
</tr>
<tr>
<td>11.113</td>
<td>Merck KGaA</td>
<td>299</td>
</tr>
<tr>
<td>11.114</td>
<td>Meso Scale Discovery</td>
<td>300</td>
</tr>
<tr>
<td>11.115</td>
<td>Metabon</td>
<td>300</td>
</tr>
<tr>
<td>11.116</td>
<td>Microbionix</td>
<td>300</td>
</tr>
<tr>
<td>11.117</td>
<td>MicroDiscovery</td>
<td>301</td>
</tr>
<tr>
<td>11.118</td>
<td>Millennium Pharmaceuticals</td>
<td>301</td>
</tr>
<tr>
<td>11.119</td>
<td>Millipore</td>
<td>301</td>
</tr>
<tr>
<td>11.120</td>
<td>MiraiBio</td>
<td>303</td>
</tr>
<tr>
<td>11.121</td>
<td>Molecular Connections</td>
<td>303</td>
</tr>
<tr>
<td>11.122</td>
<td>MolMine AS</td>
<td>303</td>
</tr>
<tr>
<td>11.123</td>
<td>Molsoft</td>
<td>304</td>
</tr>
<tr>
<td>11.124</td>
<td>Monogram Biosciences (Labcorp)</td>
<td>304</td>
</tr>
<tr>
<td>11.125</td>
<td>MTR Scientific</td>
<td>305</td>
</tr>
<tr>
<td>11.126</td>
<td>Multimetrix</td>
<td>305</td>
</tr>
<tr>
<td>11.127</td>
<td>Nanogen, Inc.</td>
<td>306</td>
</tr>
<tr>
<td>11.128</td>
<td>Nanosphere</td>
<td>306</td>
</tr>
<tr>
<td>11.129</td>
<td>NetGenics</td>
<td>307</td>
</tr>
<tr>
<td>11.130</td>
<td>NextGen Sciences</td>
<td>307</td>
</tr>
<tr>
<td>11.131</td>
<td>NimbleGen Systems</td>
<td>307</td>
</tr>
<tr>
<td>11.132</td>
<td>Nonlinear Dynamics</td>
<td>307</td>
</tr>
<tr>
<td>11.133</td>
<td>Novartis</td>
<td>308</td>
</tr>
<tr>
<td>11.134</td>
<td>Nuvera Biosciences</td>
<td>309</td>
</tr>
<tr>
<td>11.135</td>
<td>Ocuimun Biosolutions</td>
<td>309</td>
</tr>
<tr>
<td>11.136</td>
<td>OmniViz</td>
<td>309</td>
</tr>
<tr>
<td>11.137</td>
<td>One Lambda (Thermo Fisher’s Specialty Diagnostics Segment)</td>
<td>309</td>
</tr>
<tr>
<td>11.138</td>
<td>Oracle</td>
<td>310</td>
</tr>
<tr>
<td>11.139</td>
<td>OriGene Technologies, Inc.</td>
<td>311</td>
</tr>
<tr>
<td>11.140</td>
<td>Ore Pharmaceuticals, Inc. (Ore Holdings, Inc.)</td>
<td>312</td>
</tr>
<tr>
<td>11.141</td>
<td>Orla Protein Technologies Ltd.</td>
<td>313</td>
</tr>
<tr>
<td>11.142</td>
<td>Osmetech PLC (Genmark Diagnostics)</td>
<td>313</td>
</tr>
<tr>
<td>11.143</td>
<td>Oxonica</td>
<td>313</td>
</tr>
<tr>
<td>11.144</td>
<td>PamGene BV</td>
<td>314</td>
</tr>
<tr>
<td>11.145</td>
<td>Panomics</td>
<td>314</td>
</tr>
<tr>
<td>11.146</td>
<td>Partek, Inc.</td>
<td>314</td>
</tr>
<tr>
<td>11.147</td>
<td>Pepscan Therapeutics</td>
<td>315</td>
</tr>
<tr>
<td>11.148</td>
<td>Perbio Science</td>
<td>315</td>
</tr>
<tr>
<td>11.149</td>
<td>Perlegen Sciences</td>
<td>315</td>
</tr>
<tr>
<td>11.150</td>
<td>Pfizer</td>
<td>315</td>
</tr>
<tr>
<td>11.151</td>
<td>PharmaSeq, Inc.</td>
<td>316</td>
</tr>
<tr>
<td>11.152</td>
<td>Pierce Biotechnology</td>
<td>316</td>
</tr>
<tr>
<td>11.153</td>
<td>Platypus Technologies, LLC</td>
<td>316</td>
</tr>
<tr>
<td>11.154</td>
<td>Predictive Patterns Software</td>
<td>317</td>
</tr>
<tr>
<td>11.155</td>
<td>Proceryon Biosciences</td>
<td>317</td>
</tr>
<tr>
<td>11.156</td>
<td>Protagen AG</td>
<td>317</td>
</tr>
<tr>
<td>11.157</td>
<td>ProteinOne</td>
<td>318</td>
</tr>
<tr>
<td>11.158</td>
<td>Proteome Sciences</td>
<td>318</td>
</tr>
<tr>
<td>11.159</td>
<td>Pub Gene, Inc.</td>
<td>318</td>
</tr>
</tbody>
</table>
11.160 Qiagen 319
11.161 Radix BioSolutions 323
11.162 Randox Laboratories Ltd. 323
11.163 RayBiotech 323
11.164 Redasoft 324
11.165 RedStorm Scientific 324
11.166 Reel Two (Surechem, Inc.) 324
11.167 Rescentris 324
11.168 Roche 324
11.169 Rosetta Biosoftware 326
11.170 Rules-Based Medicine (Myriad Genetics, Inc.) 326
11.171 SAS 327
11.172 Schleicher & Schuell BioScience 327
11.173 SciTegic 327
11.174 Semantx Life Sciences 327
11.175 Sequenom 327
11.176 Siemens Healthcare Diagnostics 328
11.177 Sigma-Aldrich 330
11.178 Silicon Genetics 331
11.179 Singulex 331
11.180 Softberry, Inc. 331
11.181 SoftGenetics 331
11.182 SomaLogic 331
11.183 Spotfire 332
11.184 SPSS 332
11.185 Strand Life Sciences 333
11.186 Stratagene 333
11.187 SuperBioChips Laboratories 333
11.188 SurroMed 333
11.189 Sun Microsystems 333
11.190 Sygnis Pharma AG 334
11.191 Techne Corporation 334
11.192 Tepnel Life Sciences (Hologic Gen-Probe) 335
11.193 Teranode 335
11.194 Textco BioSoftware 336
11.195 TG Services, Inc. 336
11.196 Thermo Fisher Scientific 336
11.197 Third Wave Technologies 337
11.198 Thomson Reuters 337
11.199 TIBCO Software, Inc. 338
11.200 TimeLogic 338
11.201 TriStar Technology Group 338
11.202 Tyrian Diagnostics (formerly Proteome Systems) 338
11.203 VBC-Genomics Bioscience Research GmbH (Phadia Multiplexing Diagnostics GmbH) 339
11.204 Ventana Medical Systems 339
11.205 ViaLogy 339
11.206 Wyeth 339
11.207 Zeptosens 340
11.208 Zeus Scientific 340
11.209 Zyagen 340

Appendix 1: FDA Guidance for Industry: Pharmacogenomic Data Submission 341
Appendix 1.1: Introduction 341
Appendix 1.2: Background 341
Appendix 1.3: Submission Policy 342
Appendix 1.3.1: General Principles 342
Appendix 1.3.2: Specific Uses of Pharmacogenomic Data in Drug Development and Labeling 343
Appendix 1.3.3: Benefits of Voluntary Submissions to Sponsors and FDA 344
Appendix 1.4: Submission of Pharmacogenomic Data 345
Appendix 1.4.1: Submission of Pharmacogenomic Data during the IND Phase 345
Appendix 1.4.2: Submission of Pharmacogenomic Data to a New NDA, BLA, or Supplement 346
Appendix 1.4.3: Submission to a Previously Approved NDA or BLA 347
Appendix 1.4.4: Compliance with 21 CFR Part 58 347
Appendix 1.4.5: Submission of Voluntary Genomic Data from Application-Independent Research 348
Appendix 1.5: Format and Content of a VGDS 348
Appendix 1.6: Process for Submitting Pharmacogenomic Data 349
Appendix 1.7: Agency Review of VGDSs 349
Glossary 351
Appendix 2: Guidance for Industry and Food and Drug Administration Staff—In Vitro Companion Diagnostic Devices 352
Appendix 2.1: Introduction 352
Appendix 2.2: Background 352
Appendix 2.3: Definition and Use of an IVD Companion Diagnostic Device 353
Appendix 2.4: Review and Approval of IVD Companion Diagnostic Devices and Therapeutic Products 354
Appendix 2.4.1: Novel Therapeutic Products 354
Appendix 2.4.2: Approval of a Therapeutic Product without an Approved IVD Companion Diagnostic Device 354
Appendix 2.4.3: General Policies 355
Appendix 2.5: Labeling 355
Appendix 2.5.1: Therapeutic Product Labeling 355
Appendix 2.5.2: IVD Companion Diagnostic Device Labeling 356
Appendix 2.6: Investigational Use 357

INDEX OF FIGURES
Figure 2.1: Drug Discovery and Development Paradigm 30
Figure 2.2: Paradigm of Drug Discovery and Development Illustrating the Central and Essential Role of Biomarkers in Screening 34
Figure 2.3: Functional Genomic Process for Drug Development 35
Figure 2.4: Reimbursement for Diagnostics in Healthcare Decision Making: Percentage Influence on Healthcare Decision Making 39
Figure 2.5: Reimbursement for Diagnostics in Healthcare Decision Making: Percentage of Healthcare Spending 39
Figure 2.6: Market Growth and Evolution of Companion Biomarkers 40
Figure 2.7: Medical Product Development Models 41
Figure 2.8: Segmentation of the Biomarker Development Market 42
Figure 2.9: Global Pharmaceutical Drug Sales, 2004-2018 47
Figure 2.10: Worldwide Generic Pharmaceutical Drug Market, 2003-2018 49
Figure 2.11: Worldwide OTC Pharmaceutical Drug Market, 2003-2018 50
Figure 2.12: Worldwide Biopharmaceutical Drug Market, 2003-2018 51
Figure 2.13: Number of Compounds by Clinical Trial Phase, 2012 55
Figure 2.14: Biomarkers Market Drivers 69
Figure 2.15: Challenges in the Biomarkers Space 70
Figure 2.16: FDA Co-Developed Products 75
Figure 3.1: Worldwide Microarray Market Size, 2004-2018 84
Figure 3.2: Informatics Applications Along the Drug Discovery Value Chain 103
Figure 3.3: Bioinformatics Software Flow Chart 104
Figure 3.4: Growth of GenBank, 1982-2012 104
Figure 3.5: Role of Bioinformatics in the Drug Discovery Value Chain 115
Figure 3.6: Challenges in the Study or Utilization of Proteomic Biomarkers 119
Figure 3.7: Challenges in the Study or Utilization of Companion Diagnostic Biomarkers 120
INDEX OF TABLES

Table 2.1: Utility of Biomarkers as Companion Diagnostics to Drug Development 26
Table 2.2: Biomarker End Points in Drug Development 28
Table 2.3: Value of Biomarkers in Phase II Clinical Trials 30
Table 2.4: Representative Companion Diagnostic Deals 31
Table 2.5: Selected Examples of Companion Diagnostics Used in Cancer Therapies 33
Table 2.6: Comparative Genome Sizes of Humans and Other Organisms 36
Table 2.7: Global Pharmaceutical Drug Sales, 2004-2018 47
Table 2.8: Worldwide Generic Pharmaceutical Drug Market, 2003-2018 48
Table 2.9: Worldwide OTC Pharmaceutical Drug Market, 2003-2018 49
Table 2.10: Worldwide Biopharmaceutical Drug Market, 2003-2018 50
Table 2.11: Threats to Pharmaceutical Industry Productivity 52
Table 2.12: Competitive Forces Governing the Pharmaceutical Industry 52
Table 2.13: Time Line for Development of Companion Diagnostics 53
Table 2.14: Leading Therapy Classes for R&D, 2012 54
Table 2.15: Global Total Pharmaceutical Industry R&D Spending, 2004-2018 56
Table 2.16: Pharmaceutical R&D Spend: Top 20 Companies and Total Market, 2011 and 2018 57
Table 2.17: Global Pharmaceutical Top Markets, 2011 57
Table 2.18: World’s Top-Selling Drugs, 2011 and 2012 58
Table 2.19: Top Pharmaceutical Companies by Pharmaceutical Sales, 2011 and 2012 59
Table 2.20: Leading Therapy Classes by Global Pharmaceutical Sales, 2012 59
Table 2.21: New Molecular Entity Approvals for 2012 61
Table 2.22: Pharmaceuticals Industry Challenges 65
Table 2.23: Reasons for Developing Phase I Biomarkers 66
Table 2.24: Percentage of Non-Responders in Various Drug Classes 66
Table 2.25: High Profile Drug Withdrawals from the Marketplace 67
Table 2.26: Market Opportunities in Biomarkers 70
Table 2.27: Challenges for Market Adoption of the Various Biomarkers Tests 71
Table 2.28: Biomarkers Industry SWOT 72
Table 2.29: Stakeholders and their Expectations of Companion Diagnostics 73
Table 3.1: Worldwide Microarray Market Size, 2004-2018 84
Table 3.2: List of DNA Array Manufacturers 90
Table 3.3: U.S. qRT-PCR Market, 2007-2018 96
Table 3.4: Theranostics Technology Platforms—Timeline of Impact 98
Table 3.5: Impact of Personalized Medicine on Various Therapeutic Areas 99
Table 3.6: Hurdles in Biomarkers Development in Therapeutic Areas 100
Table 3.7: Data Source and Bioinformatic Investigations 107
Table 3.8: Drivers and Challenges of the Bioinformatics Industry 110
Table 3.9: Bioinformatics Activities, Sub-Activities and Key Players 117
Table 3.10: Concentration of Some Abundant Proteins, New Cancer Biomarkers Identified by SELDI-TOF, and Classical Cancer Biomarkers in Serum 126
Table 3.11: Device Submission Elements for the FDA 126
Table 3.12: Toxicogenomic Standards and Their Organizations 130
Table 3.13: Genomic and Proteomic Technologies 131
Table 4.1: Companion Biomarker Market Size, 2008-2018 133
Table 4.2: Kidney Biomarkers 140
Table 4.3: Herceptin Worldwide Sales, 2000-2017 143
Table 4.4: Characteristics of Different Cancer Biomarker Types and Associated Market Opportunities 143
Table 4.5: Segmentation of the Cancer Biomarker Market by Type of Cancer Biomarkers and Market Size 144
Table 4.6: Cancer Biomarker Market Estimates by Tissue of Origin 145
Table 4.7: Companies Developing New Proteomic Cancer Biomarker Technology Platforms 146
Table 4.8: Cancer Biomarkers Used to Maximize Likelihood of Response 148
Table 4.9: Biomarkers for Monitoring Therapeutic Effectiveness and Resistance 148
Table 6.1: Contract Research Companies 161
Table 8.1: Stakeholders in Biomarker Development 170
Table 9.1: Structure of the Critical Path 188
Table 9.2: Device Submission Elements for the FDA 201
Table 9.3: Factors that Cause Unnecessary Delays in New Product Approvals 201
Table 10.1 Companion Diagnostics Deals by Type 218
1. **Overview**

1.1 **Statement of Report**

The term “companion biomarker” means that a particular diagnostic test is specifically linked to a therapeutic drug either during its development or in the clinic. This linkage can be an important component of the drug development process; or alternatively, the companion biomarker can be useful in ameliorating the regulatory process for the drug, or acting as an aid to therapeutic use in the clinic. This TriMark Publications report focuses on the role of companion diagnostic tests in drug development. This report will provide an in-depth discussion and analysis of the application of companion biomarkers to drug development and targeted therapeutics, as well as their use in clinical trials and the regulatory forum. This examination emphasizes new and developing technology platforms meant to aid in development of drugs for therapeutic use, and sometimes to be available as companion tests for these drugs in the clinic.

1.2 **About This Report**

This report describes new biomarker technology platforms developed for the analyses of drug targets that are connected to the effectiveness of therapeutic agents in a clinical setting. The emphasis is on those companies that are actively developing and marketing new companion diagnostic tests for performing biomarker tests during drug development, as opposed to the more routine and clinically accepted companion markers that are manufactured and marketed by large diagnostic companies for routine clinical use.

This review focuses on biotech and pharmaceutical companies who have new products and procedures for drug development. Traditional diagnostic companies in the process of developing new ideas for clinical diagnostic purposes are not reviewed in any detail here. However, many pharmaceutical companies take great pains to point out that they are not diagnostic development companies, and as new drugs reach the clinic, some of the companion diagnostic tests that are used internally by pharmaceutical companies in their clinical trials and FDA applications can be turned over to diagnostic companies for further development in the clinic.

1.3 **Scope of the Report**

This analysis differs from TriMark’s *Personalized Medicine* and *Companion Diagnostics for Personalized Medicine and Cancer Therapy* reports in that it emphasizes diagnostic tests that are linked in their usage to development stage work on therapeutic agents. This study emphasizes pharmaceutical and biotech companies that are actively developing new technology platforms for performing companion biomarker diagnostics tests in the clinical trial and early drug development setting.

1.4 **Objectives**

The main objectives of this review are:

- Identifying viable technology drivers through a comprehensive look at platform technologies for *in vitro* diagnostic tests used as biomarkers, which are used to monitor the efficacy of therapeutic drugs.

- Obtaining a complete understanding of the new companion biomarker diagnostic tests—*i.e.*, predictive, screening, prognostic, monitoring, pharmacogenomic and theranostic—from their basic principles to their applications.

- Discovering growing market opportunities in drug development by identifying high-growth applications in different biomarker areas, with a major focus on the biggest and expanding markets in oncology (*e.g.*, biomarkers for cancer therapeutics).

- Focusing on global pharmaceutical industry development through an in-depth analysis of the major world markets for companion diagnostics, including growth forecasts.
The report discusses the various market trends and opportunities using biomarkers in drug development. The reader should consult other TriMark Publications reports at http://www.trimarkpublications.com for detailed discussions of important individual market segments related to the companion diagnostics market. TriMark provides a separate market report called DNA Sequencing and PCR Markets, which emphasizes the analytical methods and PCR technology platforms used in companion diagnostics. A sister report, Pharmacogenomics for Clinical Use and in Drug Development, on the use of companion diagnostic tests in treatment selection for patients in the diagnostic sector is recommended as a companion report to this one. The biotech sector developing new companion biomarkers for drug development is the focus of this examination.

Specialty companion diagnostics testing such as pathology screening methods and special tissue stains to examine companion cells in situ are mentioned, since they are often part of the overall analytical focus of companies that market companion technology platforms. However, no effort is made to quantify this older and broader market. These subjects are discussed in other TriMark Publications reports. Leading companies are discussed in-depth, with sections on the companies’ histories, product lines, business and marketing analyses, and subjective commentary on the companies’ market positions.

The report examines:

- Opportunities and hurdles in the development of companion biomarkers in drug discovery using proteomics and genomics.
- Secreted proteins as biomarkers.
- Adaptive design using biomarkers.
- Pharmacodynamic biomarkers identified with broad-based phenotyping as companion diagnostics.
- Tools for improving measurement, safety and validation of biomarkers in drug development.
- Filling the gap between discovery and clinically validated biomarkers.
- Enabling technologies for oncology biomarker discovery.

This analysis answers the questions:

- How can pharmaceutical companies identify which agents need to be developed with a companion diagnostic and which do not?
- Is the stratification of disease markets a reason to avoid targeted therapies and companion diagnostics?
- Which diagnostics’ companies are developing biomarkers that might be potential targets for licensing or acquisition?
- What are the latest developments in the biomarker field with regard to drug development?
- What are the advantages of going the CLIA certified lab route?
- Are all companion diagnostics likely to need FDA approval in the near term?
- Which companies are utilizing cutting-edge technologies to develop, validate, and implement companion biomarkers for clinical use in the drug development and clinical trial setting?
- What impediments still exist to incorporating promising biomarkers into clinical trials?
- Which companion biomarkers show the most promise for use in drug approval?
- How can regulatory oversight drive approval and adoption of new technologies?
- Which alliances show the greatest synergy in bringing valid biomarkers to drug development?
- Which shared technologies are driving the most encouraging development?
- What is the current FDA stance on biomarkers and their potential to increase efficiency in drug development?
- How will insurance companies react to the use of biomarkers for pre-disposition and personalized medicine?
- What is the FDA’s Critical Path Initiative?
- Do biomarkers really speed up the approval process?
- What stages does a biomarker need to go through for the FDA to consider it validated?
- What is the FDA viewpoint on pre-competitive cooperation on biomarker studies?
- What are the key opportunities in biomarker discovery, development and commercialization?
- What are the current obstacles in biomarker implementation?
• How do business strategies, such as those relating to acquisition, drive biomarker strategies?
• What is the right balance between using external partnerships and developing internal infrastructure?
• How might novel biomarker development lead to acquisition strategies and their implications for deal making?
• Which types of biomarkers should be developed at various stages in the drug pipeline?
• What strategies help translate biomarkers from preclinical to clinical development?
• In what class of drugs is the value of using biomarkers in decision making the highest?
• How are clinical trial costs increased by including biomarkers?
• How can Big Pharma co-develop biomarkers in a cost-sharing model for regulatory acceptance?

Key features of this report:

• Analysis of leading pharmaceutical and biotechnology companies and academic groups at the forefront of biomarker discovery, validation and utilization.
• Examination of the key trends which are currently affecting the discovery and application of biomarkers such as the development of molecular diagnostics and the application of valid, probable valid and exploratory biomarkers in drug discovery.
• Assessment of the pivotal role that biomarkers play in the development of new diagnostic devices both in conjunction with drugs as targeted therapies and in areas of unmet medical need.

1.5 Methodology

The author of this report holds a Ph.D. in biochemistry from the University of Minnesota and has had post-doctoral experience at the University of Connecticut School of Medicine. He has taught at Quinnipiac University and the Tufts School of Medicine, and has been a senior scientist at Pfizer Pharmaceutical Laboratories in drug development. He also has many decades of experience in science writing and as a medical industry analyst. He has over 30 years of experience in laboratory testing and instrument and reagent development technology as a licensed clinical laboratory director, as well as extensive experience in senior level management positions in biotech and medical service companies. The editor of this report is a Ph.D. in biochemistry from the University of Liverpool and an MBA from Oxford Brookes University with many decades of experience in science writing and as a medical industry analyst.

Company-specific information is obtained mainly from industry trade publications, academic journals, news and research articles, press releases and corporate websites, as well as annual reports for publicly-held firms. Additional sources of information include non-governmental organizations (NGOs) such as the World Health Organization (WHO) and governmental entities such as the U.S. Department of Health and Human Services (HHS), the National Institutes of Health (NIH), the Food and Drug Administration (FDA) and the Centers for Disease Control and Prevention (CDC). Where possible and practicable, the most recent data available have been used.

Some of the statistical information was taken from Biotechnology Associates’ databases and from TriMark’s private data stores. The information in this study was obtained from sources that we believe to be reliable, but we do not guarantee the accuracy, adequacy or completeness of any information or omission or for the results obtained by the use of such information. Key information from the business literature was used as a basis to conduct dialogue with and obtain expert opinion from market professionals regarding commercial potential and market sizes. Senior managers from major company players were interviewed for part of the information in this report.

Primary Sources

TriMark collects information from hundreds of Database Tables and many comprehensive multi-client research projects, as well as Sector Snapshots that it publishes annually. TriMark extracts relevant data and analytics from its research as part of this data collection.
Secondary Sources

TriMark uses research publications, journals, magazines, newspapers, newsletters, industry reports, investment research reports, trade and industry association reports, government-affiliated trade releases and other published information as part of its secondary research materials. The information is then analyzed and translated by the Industry Research Group into a TriMark study. The Editorial Group reviews the complete package with product and market forecasts, critical industry trends, threats and opportunities, competitive strategies and market share determinations.

TriMark Publications Report Research and Data Acquisition Structure

The general sequence of research and analysis activity prior to the publication of every report includes the following items:

- Completing an extensive secondary research effort on an important market sector, including gathering all relevant information from corporate reporting, publicly available databases, proprietary databases, direct meetings and personal interviews with key personnel.

- Formulating a study outline with the assigned writer, including important items:
 - Market and product segment grouping and evaluating their relative significance.
 - Key competitors’ evaluations including their relative positions in the business and other relevant facts to prioritize diligence levels and assist in designing a primary research strategy.
 - End-user research to evaluate analytical significance in market estimation.
 - Supply chain research and analysis to identify any factors affecting the market.
 - New technology platforms and cutting edge applications.

- Identifying the key technology and market trends that drive or affect these markets. Assessing the regional significance for each product and market segment for proper emphasis of further regional/national primary and secondary research.

- Launching a combination of primary research activities including two levels of questionnaires, executive-direct focused, company-specific, and region-specific communications to qualified and experienced senior executives worldwide.

- Completing a confirmatory primary research assessment of the report’s findings with the assistance of Expert Panel Partners from the industry being analyzed.

1.6 Executive Summary

The companion diagnostics market represented by pharmaceutical, medical device, and diagnostic companies is estimated at $[Redacted] and is expected to grow by [Redacted] annually reaching $[Redacted] by [Redacted]. Rapid changes in drug company pipelines and research and development (R&D) investment requires that current status of drug development programs be reviewed and updated. Drug development is being significantly influenced by biomarkers and companion diagnostics. Industry experts estimate that [Redacted]% to [Redacted]% of Phase II clinical trials have incorporated companion biomarkers; and this number is thought to be even higher in oncology.

- [Redacted]% of existing drug programs have a CDx test associated.
- [Redacted]% to [Redacted]% of drugs in Phase III have a CDx association.

Pharma and diagnostic companies are being forced to change their business models both internally and in partnerships. The regulatory agencies may need to create new structures/categories to deal with the combination of therapeutics and diagnostics.
The number of IVD licensing deals with pharmaceutical companies for companion diagnostics increased significantly during 2009-2012, with 33 deals in 2012, 29 deals in 2011, 25 deals reported in 2010, with 19 deals in 2009 and seven in 2008.

Drivers: The strong appetite for companion deals was driven by increasing signals from regulators and payers, stressing the importance of biomarkers and diagnostics to improve drug performance and allow for more cost-effective allocation of tight healthcare budgets.

Barriers: Companion diagnostics have had notable disappointments in which a CDx has not been adequately developed, is not needed for drug approval after all, or faces commercial hurdles. These hurdles include FDA approval of a test that is not reimbursed and the substitution of the FDA-approved CDx with another test.

In this emerging paradigm, diagnostic platform companies do not have clear guidelines to determine whether to develop a CDx. Pharma is adapting by making more systematic use of companion diagnostic programs to increase drug response rates and reduce side effects.

Diagnostic companies with strong molecular and tissue diagnostic capabilities have been active at developing tools to respond to pharma’s specific needs. The pharma industry is concerned about the companion diagnostics use adversely affected by current pricing and reimbursement practices, as well as patient demographic use.

Many diagnostics partners feel they are not getting a fair share of Rx-Dx partnership values.

Pharma Partners: While Big Pharma dominated, niche therapeutics specialists also showed an interest in diagnostics partnerships. Big Pharma remained dominant among the pharma partners in 2012.

Diagnostic Partners: In 2012, larger diagnostics companies became more active partners for the pharmaceuticals industry.

6 Outlook: The appetite for companion deals will remain strong because the same drivers will continue and intensify in 2013 and beyond.

By 2020, if drug-diagnostic co-development becomes routine, most leading pharma companies are expected to change their business model to incorporate significant in-house diagnostics capabilities. The volume of external alliances is expected to remain high, but the trend may lose momentum.

Key Findings:

- The global biomarker market is estimated to be $20.5 billion by 2014, growing at a compounded annual growth rate (CAGR) of 19.7% from 2009 to 2014, driven by the high demand for the biomarkers in the field of drug discovery. The markets for biomarker tools and services are expected to grow at a CAGR of 18.5% and 22.2%, respectively. The increasing use of biomarkers in clinical services is boosting the overall biomarker service market.

- It has been estimated that the global market for companion biomarkers was valued at $86.02 million in 2008. This had increased to an estimated $140 million in the year 2012. By the end of the forecast period, it is predicted that the market will have increased in value to $319.61 million (CAGR 14.6%).

- The sales of marketed companion drugs was enhanced by companion diagnostics, with six drugs achieving blockbuster status. The application of pharmacogenomics to targeted studies, in which patient populations are enriched with potential responders, can lead to cost savings of around $85 million through the streamlining of clinical trials.

- The market for molecular diagnostics is gaining momentum, with Roche’s AmpliChip P450 which was the first to receive regulatory approval to a recent FDA approval of Gen-Probe’s PROGENSA PCA3 assay to
determine need for repeat-prostate biopsies and FDA approval of BD Max™ MRSA test developed by BD Diagnostics. Tests for areas of high unmet need, such as certain types of cancers, cardio-vascular diseases Alzheimer’s disease, and rapid-detection tests for respiratory infections are set to drive further growth in the market.

- The role of biomarkers spans all aspects of drug discovery and development from target discovery and validation, lead prioritization and optimization, study of drug and disease mechanisms, toxicity profiling and proof-of-concept in preclinical studies, to use in clinical trials as secondary and surrogate endpoints.

- In [year], over [percentage]% of the new molecular entities (NMEs) were approved with a pharmacogenomic biomarker by the FDA, with nine premarket authorizations (PMAs) for five indications in [year].

- In terms of value, over [percentage]% of the sales in the companion drugs market was contributed by drugs indicated for cancer.

Oncology Companion Diagnostics

- As noted above, much of the activity in Companion Diagnostics has been focused in the area of oncology. A number of Companion Diagnostic markers have been developed for targeted therapeutics such as Herceptin (Genetech), Tarceva (OSI Pharmaceuticals/Genetech), Iressa (Astra Zeneca) and Erbitux (Imclone/Bristol Myers Squibb). Recently the wild type K-ras gene has been identified as a predictor of treatment response to Erbitux as well as Vectibex (Amgen).

- In addition, there has been considerable activity in the use of Companion Diagnostic markers to predict toxicity, efficacy and drug dosage in order to ensure hitting critical endpoints.

- The overall companion drugs market is dominated by three leading companies—Roche Laboratories, Novartis and Pfizer. Together these companies accounted for over [percentage]% of the companion drugs market in [year].

- There are several personalized medicine diagnostics in the market, with companion diagnostics constituting its subset. Companion diagnostics represented approximately [percentage]% of the personalized medicine diagnostics market in [year].

- The pipeline for companion diagnostics is robust, with most products being developed by a collaborative effort of pharmaceutical and diagnostics companies. Many start-ups diagnostic companies are also engaged in partnerships with large pharmaceutical companies for developing companion diagnostic tests.

- The U.S. was the largest market for companion diagnostics in [year], accounting for over [percentage]% of the total market.

The introduction of biomarkers to drug development will help bring new medicines by:

- Identifying the right patients faster.
- Reducing the time of developing new drugs.
- Improving the ability to predict success in drug development.
- Decreasing the attrition rate among developmental candidates.
- Lowering development costs.
- Aiding in monitoring drugs during the regulatory process.
- Bringing greater efficiency to clinical trials.

More recently, biomarkers have begun to assume a greater role in drug discovery and development. The challenge for biomarkers in drug development is to improve the introduction of earlier, more robust drug safety and efficacy measurements into the drug development pipeline. TriMark sees its role in drug development as continuing to grow for the foreseeable future. The world pharmaceutical industry, driven by scientific and technological advances, new
drug discoveries, advances in therapeutic knowledge and changes in government and regulatory controls, generally is very successful. The combined global pharmaceutical markets were valued at $883 billion in 2012, up 6.5% from 2011. Global pharmaceutical sales grew at a CAGR of 6.5% to 2010, and for the last two years the CAGR has been ~6.5%. The pharmaceutical drug sector is projected to reach $1.2 trillion worldwide by 2018, with a CAGR of 6.6%.

Though the pharmaceutical industry remains one of the most profitable and stable industries, several variables are threats to continued growth and are causing fundamental changes in the industry structure. The accelerating cost of medical care and, in particular, the escalating cost of drugs (particularly to the elderly) has the drug industry under attack. We believe that this presents a golden opportunity for new technologies in drug development, i.e., biomarkers. The use of companion diagnostic tests (e.g., biomarkers) in drug development will:

- Yield safer and more efficacious drug products.
- Reduce clinical trial and development costs.
- Improve post-marketing safety profiles.
- Salvage therapies that otherwise would not be granted approval.

Biomarkers must have the following operational characteristics to be applicable to drug development programs:

- Readily available source material.
- Minimally invasive.
- Multiple sampling possible.
- Surrogacy: changes in the biomarker are linked to clinical outcomes.

Biomarkers have been used in drug development to establish:

- A minimally biologically effective dose (MBED).
- Optimal biologically effective dose (OBED).
- Selection of optimal dose and schedule for Phase II and Phase III trials.
- Make effective “go”/“no-go” decisions.

Selectivity is an important aspect of biomarker development as companions in drug development:

- Careful selection of targets for clinical trials.
- Careful and deeper analysis of toxicity screening.
- Proper patient selection for late stage trials.
- More data for the FDA.
- Possible companion diagnostic tests for patient selection and efficacy in the clinic.
- Partnering of early stage discovery companies with contract research organizations (CROs) and traditional pharma companies.

In addition, the larger pharmaceutical companies are utilizing biomarkers to look for efficacy or toxicity of their lead compounds in patient subpopulations. The classic example here is screening for HER-2/neu over expression before using the biologic therapeutic Herceptin in breast cancer therapy. Potential benefits of biomarkers as companion diagnostics:

- Streamline drug discovery programs.
- Provide a target for therapy.
- Identify potential responders to a drug.
- Identify individuals at risk for adverse events.
- Tool for monitoring response to drug therapy.

The global market for biomarkers in the form of companion diagnostics is much more of a developing market, and user segments in the clinical and drug development space are still diffuse. As such, TriMark feels that the
companion diagnostic market is still in its infancy, making it difficult to accurately predict the growth trajectory of this space. Key points noted include the following:

- An initial lag exists as awareness is generated in the clinical marketplace, followed by recruitment of early adopters who generate new applications. This drives early revenue generation in the marketplace and more interest in developing companion diagnostics for clinical trials. For companion diagnostics, this occurred in the interval of 2007 to 2012.

- Rapid growth as the broader market is recruited by the initial papers and due to the excitement generated by early adopters. The growth rate of the clinical user market is high as new applications are developed and vendors commercialize products aggressively. The market is beginning to fragment as drug developers begin to routinely add companion tests to their programs; this is the near term outlook for companion diagnostics.

- Despite a slowdown of the growth rate, revenues in the market keep increasing as new products are introduced in the clinic, new applications developed and new clinical trials are recruited. TriMark expects this to continue through 2013 and 2014 for the companion diagnostics marketplace.

Companion Biomarker Trends

- The relative contribution of therapeutic development and clinical trials using personalized medicine is small; they account for only 10% of the total end-user applications.

- The current personalized medicine marketplace is not heavily-weighted towards therapeutic development and clinical trials.

- A large proportion of this marketplace—46% in total—is composed of participants that are involved with developing technologies or products for personalized medicine. The emphasis is more “upstream” in this marketplace, as opposed to more “downstream” applications—such as therapeutics development, conducting clinical trials, etc.

- The industry still does not contain enough molecular signatures which are predictive of biological outcome to create a large supply of companion biomarkers, and this remains a significant market opportunity for the market participants.

Results/Takeaways from the Market Model

This market opportunity is focused in three spaces:

- Drug development targets.
- Drug development efficacy.
- Clinical end points.

Cost per experiment is only for direct cost of the reagents/consumables and does not include salaries, other personnel costs, equipment/instrumentation, or license fees. This market model is highly conservative, and TriMark feels that it appropriately reflects the industry revenues harvested from direct sales of products into the biomarker space. Pharma companies are intensely interested in examining the role of biomarkers in:

- Early-stage drug discovery.
- Preclinical studies.
- Late-stage clinical trials of drug development.

Changes in pharma business models are reported on a regular basis. R&D expenditures, mass layoffs, and the much feared end of the “blockbuster” era are driving both the pharma and diagnostic industries to change their paradigms. New stakeholders such as PBM’s, and CLIA lab diagnostic models, which have evolved over the past few years, are
adding to the rapid rate of change in the industry. New regulatory and reimbursement models are needed to deal with the future of a more intertwined strategy between pharma and diagnostics. The question of value, and cost (of new therapeutics) will continue to be a source of debate.

The reasons for growth of companion diagnostics:

- Low drug efficacy rates in clinical practice.
- Poor drug dosing compliance among patients.
- High cost of drug development.
- Many Phase II and III Drug development failures.
- Numerous drug recalls.
- New tools and technologies enabling the move to companion diagnostics.
- Growing significance of biomarkers in clinical medicine.
- Reducing costs of genome sequencing.

Companion diagnostics combines drug and diagnostic test development. The potential for efficient drug development is great because companion diagnostics can be used to predict drug response and treatment efficacy in the clinic. In this regard, companion diagnostics dovetail with the promise of personalized medicine.

However, the advantages of companion diagnostics are only one side of the equation. They can also be seen as disruptors of the pharmaceutical market in that they could potentially restrict the size of treatable populations. Finally, to date Roche Laboratories is the leader in this space, with the largest number of successful companion diagnostics.