COAGULATION DIAGNOSTIC TESTING MARKETS

(SAMPLE COPY, NOT FOR RESALE)

Trends, Industry Participants, Product Overviews and Market Drivers
TABLE OF CONTENTS

1. Overview 10
 1.1 Statement of Report 10
 1.2 About this Report 11
 1.3 Scope of the Report 11
 1.4 Objectives 12
 1.5 Methodology 12
 1.6 Executive Summary 13

2. Introduction to Hemostasis and Blood Coagulation 15
 2.1 Vascular Constriction 15
 2.2 Platelet Activation and Platelet Plug Formation 15
 2.3 Blood Coagulation 16
 2.3.1 Coagulation Cascade 16
 2.3.2 Current Cell-Based Model for Blood Coagulation 17
 2.3.2.1 Initiation of Blood Coagulation 17
 2.3.2.2 Amplification of Blood Coagulation 18
 2.3.2.3 Propagation of Blood Coagulation 19
 2.4 Fibrinolysis 19
 2.5 Regulation of Coagulation 20
 2.5.1 Tissue Factor Pathway Inhibitor 20
 2.5.2 Antithrombin 21
 2.5.3 Thrombomodulin and Protein C 22
 2.5.4 Protein Z and Protein Z-dependent Protease Inhibitor 22
 2.5.5 Prostacyclin 22
 2.6 Clinical Significance of Blood Coagulation and Anticoagulants 22
 2.6.1 Overview of Bleeding Disorders 23
 2.6.2 Overview of Hypercoagulable Disorders 24
 2.6.3 Anticoagulation Therapy in Cardiovascular Disease 25
 2.7 Overview of Commonly Used Drugs to Regulate Coagulation 27
 2.7.1 Heparin (Unfractionated) 28
 2.7.2 Low Molecular-Weight Heparin (LMWH) 28
 2.7.3 Fondaparinux 29
 2.7.4 Warfarin (Coumadin) 29
 2.7.5 Direct Factor Xa Inhibitors 29
 2.7.6 Direct Thrombin Inhibitors 30
 2.7.7 Thrombolytic Agents 31
 2.7.8 Antiplatelet Agents 31
 2.7.9 Differences Between Antiplatelets and Anticoagulants 33
 2.8 Situations Requiring Coagulation Testing 33
 2.8.1 Managing Anticoagulation Therapies 33
 2.8.1.1 Monitoring Unfractionated Heparin 34
 2.8.2.2 Monitoring Low-Molecular Weight Heparin 36
 2.8.1.3 Monitoring Warfarin 36
 2.8.1.4 Monitoring Direct Factor Xa Inhibitors 37
 2.8.1.5 Monitoring Direct Thrombin Inhibitors 38
 2.8.1.6 Monitoring Antiplatelet Therapies 39
 2.8.1.7 Perioperative Monitoring of Coagulation 40
 2.8.1.8 Monitoring of Coagulation During Hemodialysis 41
 2.8.2 Diagnosing and Managing Bleeding Disorders 41

3. Overview of Routine and Special Blood Coagulation Tests 44
 3.1 Activated Clotting Time (ACT) 44
 3.2 Activated Partial Thromboplastin Time 44
 3.3 Activated Protein C Resistance 45
3.4 Alpha-2 Plasmin Inhibitor 46
3.5 Antiphospholipid Antibody 47
3.6 Antithrombin (Activity and Antigen) 48
3.7 Bleeding Time 49
3.8 D-Dimer 49
3.9 Ecarin Clotting Time 50
3.10 Euglobulin Lysis 51
3.11 Factor Activity Assays 51
3.11.1 Factor I (Fibrinogen) Assay 53
3.11.2 Factor II 54
3.11.3 Factor III (Tissue Factor) 54
3.11.4 Factor V 55
3.11.5 Factor V Leiden Mutation 55
3.11.6 Factor VII 56
3.11.7 Factor VIII 56
3.11.8 Factor IX 57
3.11.9 Factor X 58
3.11.10 Factor XI 58
3.11.11 Factor XII 59
3.11.12 Factor XIII 59
3.11.13 High Molecular Weight Kininogen 60
3.11.14 Prekallikrein 61
3.12 Factor Inhibitor Assays 61
3.13 Fibrin Degradation Product Assay 62
3.14 Fibrinogen 63
3.15 Heparin anti-Xa 64
3.16 Heparin Induced Thrombocytopenia 65
3.17 Plasminogen Activity 66
3.18 Plasminogen Activator Inhibitor 67
3.19 Platelet Function Tests 67
3.20 Protein C 68
3.21 Protein S 69
3.22 Prothrombin Time 70
3.23 Prothrombin G20210A Mutation 72
3.24 Reptilase Time 72
3.25 Thrombin Time 73
3.26 Viscoelastic Coagulation Tests 74
3.27 von Willebrand Factor 74
4. Understanding the Technologies Used in Coagulation Testing 77
4.1 Mechanical 77
4.1.1 Viscoelastic Tests 77
4.1.1.1 TEG/Thromboelastography 78
4.1.1.2 ROTEM/Rotational Thromboelastometry 82
4.1.1.3 Sonoclot 85
4.1.1.4 Clinical Applications 88
4.1.2 Photo-Optical Detection 89
4.1.3 Electro-Mechanical and Electromagnetic Mechanical Detection 89
4.2 Immunologic 90
4.3 Chemical (Chromogenic) Assays 90
4.4 Molecular PCR Testing 90
4.5 Potential Interfering Variables Affecting Coagulation Testing 90
4.6 Influence of New Anticoagulants on Coagulation Testing Paradigms 91
4.7 Future Technologies in Coagulation and Antiplatelet Testing 93
5. Market Analysis: Size, Growth, Share, and Competitors 94
5.1 Worldwide Coagulation and Antiplatelet Testing Markets 94
5.1.1 U.S. Market 97
5.1.2 European Market 100
5.1.3 Japanese Market 101
5.1.4 ROW 102
5.2 Market Structure and Competitive Situation 104
5.2.1 Laboratory Testing 104
5.2.2 POC Coagulation Testing 106
5.2.3 Anticoagulation Clinics 108
5.2.4 Anticoagulation Self-Testing and Self-Management 108
5.3 Market Drivers and Restraints 112
5.3.1 Impact of New Oral Anticoagulant Drugs on the Coagulation Testing Market 113
5.4 Market and Technology Trends – A Look Towards the Future 114
5.5 Marketing Approaches 116
5.6 Strategic Recommendations 116
5.7 Recent Industry Activity 118
5.7.1 Roche and Diagnostica Stago Parting Ways in Laboratory Coagulation 118
5.7.2 Roche Acquires Verum Diagnostica GmbH and Expands Coagulation Testing Product Line 118
5.7.3 Universal Biosensors and Siemens Collaborate on Advanced POC Coagulation Platform 119
5.7.4 Instrumentation Laboratory and Beckman Coulter concluded their Cross-Distribution Agreement 119
5.7.5 CoaguChek® XS Personal Receives Reimbursement Approval for Self-Testing in Japan 119
5.7.6 Diagnostica Stago Launches Products for Measurement of Rivaroxaban 119
5.7.7 Diagnostic Stago Offers Three Factor VII Detection Methods 120
5.7.8 Diagnostic Stago Offers Three Procoagulant Microparticle Detection Methods 120
5.7.9 Trinity Biotech Sold its Worldwide Coagulation Business to the Stago Group 121
5.7.10 Inverness Medical Innovations Acquired HemoSense, Inc. 121

6. Coagulation Instrumentation and Assays on the Market 122
6.1 Laboratory Coagulation Testing Instruments and Assays 122
6.1.1 American Labor/Lab A.C.M. Inc. 126
6.1.1.1 CD2000 127
6.1.1.2 CoaLab 6000 127
6.1.2 Beckman Coulter 127
6.1.3 Behnk Elektronik 127
6.1.3.1 Thrombolyzer Fully Automated Systems 127
6.1.3.2 Semi-Automated Instruments 128
6.1.4 Bio/Data 129
6.1.4.1 Platelet Aggregation Profiler, Model-PAP 8E 129
6.1.4.2 Aggregation Reagents and Standalone Assay Kits 129
6.1.4.3 Coagulation Reagents and Controls 129
6.1.5 Cepheid 130
6.1.5.1 Xpert® FII & FV 130
6.1.6 Chrono-Log Corp. 130
6.1.6.1 Whole Blood-Optical Lumi-Aggregation System, Models 700-2/700-4 130
6.1.7 Diagnostica Stago 130
6.1.7.1 STA Compact Hemostasis System 130
6.1.7.2 STA Compact CT 131
6.1.7.3 STA Satellite 131
6.1.7.4 STA-R Evolution Expert Series 132
6.1.7.5 STart 4 Hemostasis Analyzer 132
6.1.7.6 Calibrated Automated Thrombogram 132
6.1.8 Helena Laboratories 133
6.1.8.1 AggRAM 133
6.1.8.2 Cascade M and Cascade M-4 133
6.1.9 Hyphen BioMed 134
6.1.9.1 HEMOCLOT Clotting Assays 134
6.1.9.2 BIOPHEN Chromogenic Reagents 134
6.1.9.3 ZYMUTEST ELISA Assays 134
6.1.10 Instrumentation Laboratory 135
6.1.10.1 ACL TOP Family of Hemostasis Testing Systems 135
6.1.10.2 ACL ELITE Series 136
6.1.10.3 ACL AcuStar 136
6.1.11 LABiTec GmbH 136
6.1.11.1 CoaLab 1000 136
6.1.11.2 CoaData 2004/4004 137
6.1.12 Pentapharm 137
6.1.13 Roche 138
6.1.13.1 cobas t 411 and cobas t 611 138
6.1.14 Sekisui Diagnostics 138
6.1.15 Siemens 140
6.1.15.1 Sysmex CA-600 Systems 140
6.1.15.2 Sysmex CA-1500 141
6.1.15.3 Sysmex CA-7000 141
6.1.15.4 BFT II 142
6.1.15.5 BCS XP 143
6.1.16 Sysmex 144
6.1.17 Tcoag 144
6.1.17.1 Destiny Max 144
6.1.17.2 Destiny Plus 144
6.1.17.3 KC1 Delta /KC4 Delta 145
6.1.18 TECO GmbH 145
6.1.18.1 Coatron M1, M2, and M4 145
6.1.18.2 Coatron A4 146
6.1.18.3 Dimex and Dimex Jr. 146
6.2 POC Coagulation Testing Instruments and Assays: Professional and Self-Testing 147
6.2.1 Abbott 150
6.2.1.1 i-STAT 1 150
6.2.2 Alere 150
6.2.2.1 INRatio/INRatio2 PT INR Monitoring Systems 150
6.2.3 CoaguSense 151
6.2.3.1 Coag-Sense PT/INR Monitoring System 151
6.2.4 Helena Laboratories 151
6.2.4.1 Cascade POC 151
6.2.4.2 Actalyke XL and Actalyke Mini II 151
6.2.4.3 Abrazo 152
6.2.5 ITC 152
6.2.5.1 ProTime Microcoagulation System 152
6.2.5.2 Hemochron Signature Elite and Signature Plus 152
6.2.5.3 Hemochron Response 153
6.2.6 Medtronic 153
6.2.6.1 HMS Plus 153
6.2.6.2 ACT Plus 154
6.2.7 Roche 154
6.2.7.1 CoaguChek XS PT Test System 154
6.2.7.2 CoaguChek XS Plus PT Test System 155
6.2.7.3 CoaguChek XS Pro PT Test System 155
6.2.8 Spartan Bioscience 155
6.2.9 Universal Biosensors 155
6.3 Platelet Function Testing Instruments and Assays 155
6.3.1 Multiplate Analyzer 156
6.3.2 Platelet Function Analyzer-100 (PFA-100) 156
6.3.3 Plateletworks Assay 157
6.3.4 Platelet VASP test (PLT-VASP) 157
6.3.5 ROTEM 158
6.3.6 Sonoclot Analyzer 158
6.3.7 TEG 5000 Thrombelastograph Hemostasis Analyzer 159
6.3.8 VerifyNow 159
6.4 Home Monitoring Devices and Assays 159
6.5 New Product Launches and Products in Development 160

7. Market Challenges 162
7.1 Cost Containment 162
7.2 Competition 162
7.3 Patent Protection 162
7.4 Regulatory Constraints 163
7.5 Discontinuation of Warfarin Therapy 163
7.6 Controversies in Guided Antiplatelet Therapy 163
7.6.1 Aspirin Resistance Testing 164
7.6.2 Clopidogrel Resistance Testing 164
7.7 Introduction of New Anticoagulants with No Monitoring Requirements 164

8. Business Trends in Coagulation Testing 166
8.1 Drivers of Coagulation Testing 166
8.2 Industry Consolidation 166
8.3 Healthcare Expenditures and Cost Controls 167
8.4 Changes in Patient Management 167
8.4.1 Testing Recommendations Updates 167
8.4.2 Centers for Medicare and Medicaid Services Impose Penalty on Readmission Rates 167
8.5 Regionalization of Laboratory Care 168
8.6 Satellite Facilities 169
8.7 Point-of-Care Coagulation Testing 169
8.7.1 Key Issues in the POC Coagulation Testing Sector 170
8.7.1.1 POC Coagulation Testing is Safe and Effective 170
8.7.1.2 Different POC Techniques Provide Diverse Information Regarding Coagulation 170
8.7.1.3 Economic Savings Associated with POC Testing 170
8.7.1.4 Effect on Clinical Outcomes 171
8.7.1.5 Connectivity Issues 171
8.7.1.6 Cost Benefits 171
8.7.1.7 Quality Control Issues 172
8.7.1.8 Cross-Contamination 172
8.7.2 Current POC Coagulation Market Trends and Drivers 172
8.7.2.1 Market Drivers 173
8.7.2.2 Market Restraints 174
8.7.2.3 POC Coagulation Testing Assay Market Trends 174
8.7.2.4 POC Coagulation Testing Assay Technology Trends 174
8.7.2.5 POC Coagulation Testing Assay Strategic Recommendations 175
8.7.3 Advantages and Disadvantages of POC Coagulation Testing 175
8.7.3.1 Advantages of POC Coagulation Testing 175
8.7.3.2 Disadvantages to POC Coagulation Testing 176
8.7.4 Key Customer Segments 176
8.7.4.1 Laboratory Testing 176
8.7.4.2 POC Coagulation Testing 177
8.7.4.3 Anticoagulation Clinics 178
8.7.4.4 Anticoagulation Self-Testing and Self-Management 178
8.7.5 Design Criteria For Decentralized Testing Products 179
8.8 Drivers of OTC and Self-Testing Markets 180

9. Regulatory Environment and Insurance Reimbursements 181
INDEX OF TABLES

Table 2.1: Coagulation Factors 17
Table 2.2: Proteins Involved in Regulating Coagulation 20
Table 2.3: Acquired Hypercoagulable Disorders 24
Table 2.4: Inherited Hypercoagulable Disorders 25
Table 2.5: Common Conditions Requiring Anticoagulation Therapy 25
Table 2.6: Limitations of Traditional Anticoagulants 28
Table 2.7: Desired Characteristics for New Anticoagulants 28
Table 2.8: Properties of FDA-Approved Direct Thrombin Inhibitors 31
Table 2.9: Advantages of Using Anti-Factor Xa Assay to Monitor Unfractionated Heparin 35
Table 2.10: Disadvantages of Using Anti-Factor Xa Assay to Monitor Unfractionated Heparin 35
Table 2.11: Recommended Laboratory Evaluations for Suspected Underlying Hypercoagulable States 42
Table 2.12: Laboratory Results in Various Platelet and Coagulation Disorders 43
Table 4.1: TEG, ROTEM and Sonoclot Assessments of Coagulation Variables
Table 4.2: Advantages of Viscoelastic Assays
Table 4.3: Disadvantages of Viscoelastic Assays
Table 4.4: TEG Reference Ranges for Kaolin-Activated Citrated Whole Blood
Table 4.5: TEG Assay Menu
Table 4.6: ROTEM Reference Ranges for Citrated Whole Blood Using the In-TEM Assay
Table 4.7: ROTEM Assay Menu
Table 4.8: Reference Ranges for Native Whole Blood Using Sonoclot Assays
Table 4.9: Sonoclot Assay Menu
Table 4.10: Pre-Analytical Variables Affecting Coagulation Testing
Table 4.11: Analytical Variables Affecting Coagulation Testing
Table 4.12: Influence of Anticoagulants on Routine Coagulation Assays
Table 4.13: Influence of Anticoagulants on Thrombophilia Assays
Table 5.1: POCT Frequency in Hospitals
Table 5.2: Benefits of Anticoagulation Self-Testing
Table 5.3: Barriers to Anticoagulation Self-Testing and Self-Management
Table 5.4: Key Market Drivers for Coagulation Testing
Table 5.5: Market Drivers for Point-of-Care Anticoagulation Testing Market
Table 5.6: Key Market Restraints for Coagulation Testing
Table 5.7: Market Restraints for Point-of-Care Anticoagulation Testing Market
Table 6.1: Coagulation Analyzers – Laboratory
Table 6.2: Comparison of IL’s ACL TOP Family of Hemostasis Analyzers
Table 6.3: Sysmex CA-600 System Assays
Table 6.4: Sysmex CA-1500 System Assays
Table 6.5: Sysmex CA-7000 System Assays
Table 6.6: BFT II System Assays
Table 6.7: BCS XP System Assays
Table 6.8: Coagulation Analyzers – POC and Self-Testing Devices
Table 6.9: Multiplate Analyzer Assays
Table 7.1: Documents for Protecting Intellectual Property Rights
Table 8.1: SWOT Analysis: Summary of Strengths, Weaknesses, Opportunities and Threats in the Coagulation POC Market
Table 9.1: Financial Comparison for Moderate and Waived CLIA Labs

INDEX OF FIGURES

Figure 2.1: Coagulation Cascade
Figure 2.2: Initiation and Amplification of Blood Coagulation
Figure 2.3: Fibrinolysis
Figure 2.4: Role of Tissue Factor Pathway Inhibitor
Figure 2.5: Role of Antithrombin
Figure 2.6: Role of Thrombomodulin and Protein C
Figure 4.1: Schematic of TEG Result Parameters
Figure 4.2: TEG Analysis Tree – Kaolin Sample Type
Figure 4.3: TEG 5000 Thrombelastograph® Hemostasis Analyzer System
Figure 4.4: Schematic of ROTEM Result Parameters
Figure 4.5: ROTEM delta
Figure 4.6: Schematic of ROTEM Result Parameters
Figure 4.7: Sonoclot Coagulation & Platelet Function Analyzer
Figure 4.8: Photo-Optical Detection System
Figure 5.1: Global Revenue Forecasts for Laboratory and POC Coagulation Testing, 2010-2018
Figure 5.2: Global Revenue Forecasts for POC Rapid Coagulation Analyzer Systems, 2010-2018
Figure 5.3: Market Share for Coagulation POC Diagnostic Testing Companies Worldwide, 2013
Figure 5.4: Overall Global Market for Anticoagulant Drugs, 2012-2019
Figure 5.5: Estimated Market for Diagnostic Assays of Platelet Function, 2013-2018
Figure 5.6: U.S. Revenue Forecasts for Laboratory and POC Coagulation Testing, 2010-2018
Figure 5.7: U.S. Laboratory Coagulation Testing Customers by Size
Figure 5.8: U.S. Market Share of Laboratory Coagulation Testing by Dollar Volume
Figure 5.9: U.S. Revenue Forecasts for POC Rapid Coagulation Analyzer Systems, 2010-2018
Figure 5.10: U.S. Market for Anticoagulant Drugs, 2012-2019
Figure 5.11: European Revenue Forecasts for Laboratory and POC Coagulation Testing, 2010-2018
Figure 5.12: European Revenue Forecasts for POC Rapid Coagulation Analyzer Systems, 2010-2018
Figure 5.13: Japanese Revenue Forecasts for Laboratory and POC Coagulation Testing, 2010-2018
Figure 5.14: Japanese Revenue Forecasts for POC Rapid Coagulation Analyzer Systems, 2010-2018
Figure 5.15: ROW Revenue Forecasts for Laboratory and POC Coagulation Testing, 2010-2018
Figure 5.16: ROW Revenue Forecasts for POC Rapid Coagulation Analyzer Systems, 2010-2018
Figure 5.17: Indian Coagulation Reagents Market – Test Contribution
1. Overview

1.1 Statement of Report

The purpose of this report is to provide a comprehensive examination of the specific segment of the in vitro diagnostics (IVD) market known as the coagulation and antiplatelet testing market. It examines the available and emerging technologies being utilized in this space, and describes the current product lines of all of the companies known to be marketing, manufacturing, or developing instruments and reagents for coagulation and antiplatelet testing. Moreover, the study defines the dollar volume of sales—both worldwide and in the U.S.—and analyzes the factors that influence the size and the growth of the market.

This report provides a thorough analysis of the coagulation and antiplatelet testing market by:

- Identifying viable technology drivers through a comprehensive look at platform technologies for coagulation and antiplatelet testing.
- Providing a description of the instruments, reagents, and supplies marketed by major companies in the coagulation and antiplatelet testing market, from their basic principles to their clinical applications.
- Discovering feasible market opportunities by identifying high-growth applications in different analytical diagnostic and disease monitoring areas.
- Focusing on global industry development through an in-depth analysis of the major world markets for coagulation and antiplatelet testing, including growth forecasts.
- Presenting market figures regarding the current value of coagulation and antiplatelet testing, market projections, market share, key players and sector growth rates.
- Providing a detailed analysis of each of the major types of coagulation and antiplatelet tests, such as automated laboratory assays and point-of-care (POC) testing.

This study contains:

- A detailed analysis of recent trends in the coagulation and antiplatelet testing marketplace.
- In-depth profiles of the leading companies with coagulation and antiplatelet testing tools and technologies.
- Perspectives of the coagulation and antiplatelet testing industry from leading industry experts.
- Analysis of potential new coagulation and antiplatelet testing applications in clinical management.
- Market predictions and trends analysis concerning U.S. expenditures on coagulation and antiplatelet testing solutions.
- Projections of coagulation and antiplatelet testing market sizes for U.S., European, and Asian markets.
- Analysis of commercial coagulation and antiplatelet testing business strategies.
- The latest news and mergers and acquisitions (M&As) developments in the coagulation and antiplatelet testing marketplace.
- A comprehensive overview and insight into coagulation and antiplatelet testing business strategies.
- Regulatory issues and legislation affecting use and marketing of coagulation and antiplatelet testing products.

Analysis includes charts and graphs measuring product growth and trends within the marketplace. Company-specific information, including sales figures, product pipeline status and research and development (R&D) trends, is provided. This review will also:

- Assess coagulation and antiplatelet testing market drivers and bottlenecks, from medical and scientific community perspectives.
- Discuss the potential benefits of coagulation and antiplatelet testing for various sectors of the medical and scientific community, as they relate to managing a variety of clinical conditions.
- Establish the current total market size and future growth of the coagulation and antiplatelet testing market and analyze the current size and growth of individual segments.
- Provide current and forecasted market shares by company.
- Discuss profit and business opportunities by segment.
• Provide strategic recommendations for near-term business opportunities.
• Assess current commercial uses of the coagulation and antiplatelet testing market.

The following questions will also be addressed in this analysis:

• What are the near-term business opportunities in the coagulation and antiplatelet testing market?
• What are the current and forecasted coagulation and antiplatelet testing market sizes in the U.S., European Union (E.U.) and Japan, as well as in other emerging markets such as India and China?
• What are the business models currently used by companies in the coagulation and antiplatelet testing market?
• How will manufacturers, researchers, physicians and patients influence this market?
• What are the drivers and bottlenecks influencing the coagulation and antiplatelet testing market?
• What are the technologies used in coagulation and antiplatelet testing?
• Who holds the proprietary rights to the coagulation and antiplatelet testing market technology platforms?
• In the U.S., Japan and the E.U., what regulatory processes apply to coagulation and antiplatelet testing technologies?
• How will new coagulation and antiplatelet testing technologies change testing paradigms?
• How will new coagulation and antiplatelet testing technologies reduce healthcare expenditures and affect R&D spending?

1.2 About this Report

The main objectives of this analysis are to:

• Identify viable technology drivers through a comprehensive look at platform technologies for coagulation and antiplatelet testing, including point of care systems and self-testing.
• Discover feasible market opportunities by identifying high-growth applications in different clinical diagnostic settings, and by focusing on expanding markets such as point of care testing, emergency medicine and satellite clinic testing.
• Focus on global industry development through an in-depth analysis of the major world markets for coagulation and antiplatelet testing, including growth forecasts.
• Assess the impact of coagulation and antiplatelet testing on central laboratory growth plans.
• Identify coagulation and antiplatelet rapid tests that are the most likely candidates for migration to self-testing platforms.
• Analyze the business issues associated with coagulation and antiplatelet testing.
• Assess the growing home testing market for International Normalized Ratio (INR).

1.3 Scope of the Report

This examination surveys most of the companies known to be currently marketing, manufacturing or developing instruments and reagents for the coagulation and antiplatelet testing market in both the U.S. and the world. Although emphasis is placed upon the U.S. market, analyses of the other regional markets are also included. The report covers diagnostic assays to detect clotting deficiencies and monitoring assays to assess the effect of anticoagulant and antiplatelet therapies. The focus in this report is on both routine and specialty assays that assess clotting mechanisms of hemostasis.

The reader should consult other TriMark Publications reports on the TriMark publications website for detailed discussions of important individual market segments related to the coagulation and antiplatelet testing market, such as Point of Care Diagnostic Testing World Markets and New Oral Anticoagulant Markets.
1.4 Objectives

The goal of this study is to review the market for coagulation and antiplatelet diagnostic testing equipment and supplies. Toward this goal, this report answers the following key questions:

- Which companies are utilizing cutting-edge technologies to develop, validate and market coagulation and antiplatelet diagnostic testing assays?
- Which new coagulation and antiplatelet diagnostic testing assays show the most promise for approval?
- What are the economic challenges in the coagulation and antiplatelet diagnostic testing market?
- How can regulatory oversight drive approval and adoption of new technologies?
- What impediments still exist to for home coagulation and antiplatelet testing?

1.5 Methodology

The author of this report holds a Master’s in immunology and has substantial experience in science writing and as a medical industry analyst. She also has many years of laboratory experience and has conducted laboratory testing and instrument and reagent development for biotech companies. The senior editor of this report holds a Ph.D. in biochemistry from the University of Minnesota and has had post-doctoral experience at the University of Connecticut School of Medicine. He has taught at Quinnipiac University and the Tufts School of Medicine, and has been a senior scientist at Pfizer Pharmaceutical Laboratories in drug development. He also has many decades of experience in science writing and as a medical industry analyst. He has over 30 years of experience in laboratory testing and instrument and reagent development technology as a licensed clinical laboratory director, as well as extensive experience in senior level management positions in biotech and medical service companies.

Company-specific information is obtained mainly from industry trade publications, academic journals, news and research articles, press releases and corporate websites, as well as annual reports for publicly-held firms. Additional sources of information include non-governmental organizations (NGOs) such as the World Health Organization (WHO) and governmental entities such as the U.S. Department of Health and Human Services (HHS), the National Institutes of Health (NIH), the Food and Drug Administration (FDA) and the Centers for Disease Control and Prevention (CDC). Where possible and practicable, the most recent data available have been used.

Some of the statistical information was taken from Biotechnology Associates’ databases and from TriMark’s private data stores. The information in this study was obtained from sources that we believe to be reliable, but we do not guarantee the accuracy, adequacy or completeness of any information or omission or for the results obtained by the use of such information. Key information from the business literature was used as a basis to conduct dialogue with and obtain expert opinion from market professionals regarding commercial potential and market sizes. Senior managers from major company players were interviewed for part of the information in this report.

Primary Sources

TriMark collects information from hundreds of Database Tables and many comprehensive multi-client research projects, as well as Sector Snapshots that it publishes annually. TriMark extracts relevant data and analytics from its research as part of this data collection.

Secondary Sources

TriMark uses research publications, journals, magazines, newspapers, newsletters, industry reports, investment research reports, trade and industry association reports, government-affiliated trade releases and other published information as part of its secondary research materials. The information is then analyzed and translated by the Industry Research Group into a TriMark study. The Editorial Group reviews the complete package with product and market forecasts, critical industry trends, threats and opportunities, competitive strategies and market share determinations.
TriMark Publications Report, Research and Data Acquisition Structure

The general sequence of research and analysis activity prior to the publication of every report in TriMark Publications includes the following items:

- Completing an extensive secondary research effort on an important market sector, including gathering all relevant information from corporate reporting, publicly-available data and proprietary databases.
- Formulating a study outline with the assigned writer, including important items, as follows:
 - Market and product segment grouping, and evaluating their relative significance.
 - Key competitors’ evaluations, including their relative positions in the business and other relevant facts to prioritize diligence levels and assist in designing a primary research strategy.
 - End-user research to evaluate analytical significance in market estimation.
 - Supply chain research and analysis to identify any factors affecting the market.
 - New technology platforms and cutting-edge applications.
- Identifying the key technology and market trends that drive or affect these markets.
- Assessing the regional significance for each product and market segment for proper emphasis of further regional/national primary and secondary research.
- Completing a confirmatory primary research assessment of the report’s findings with the assistance of expert panel partners from the industry being analyzed.

1.6 Executive Summary

Coagulation assays will continue to be one of the most commonly ordered assays in the IVD market for the foreseeable future. Many of the new models of laboratory coagulation testing devices and reagents, which are dominated by prothrombin time (PT) and aPTT, will include upgrades such as greater automation and the integration of more esoteric coagulation tests (*e.g.*, D-dimer and antiphospholipid assays). Companies are also aiming to produce assays with more specific and sensitive markers of hemostasis.

Laboratory tests are often performed to assess the functions of the different steps involved in the coagulation process. These tests are crucial for:

- Diagnosing bleeding disorders.
- Monitoring the effectiveness of anticoagulant therapies.
- Establishing a baseline coagulation status for patients who may need future anticoagulation therapies.
- Screening patients’ blood clotting status prior to surgery.
- Assessment of liver function.
- Monitoring coagulation function in patients with diseases known to interfere with coagulation.

Those who administer anticoagulants must traverse a fine line between clot prevention and the risk of unwanted, potentially fatal bleeding. Managing this balance represents a challenge for practicing physicians today. Thus, coagulation testing is imperative for effective monitoring of hemostasis and to ensure proper anticoagulant drug treatment. Understanding the risk of clotting enables health care professionals to avoid under-treating patients, which may lead to potential blood clots that can travel from the leg to the lungs or from the heart to the brain. Conversely, the other unwanted scenario would be when patients receive too much blood thinning medication, putting them at risk for serious bleeding complications.

After 60 years with warfarin and heparins as the only commonly used anticoagulants, the past 20 years have generated an impressive array of new agents. The introduction of low-molecular-weight heparins resulted in the first major change for coagulation testing by enabling outpatient care of many patients with venous thromboembolism.
The next significant shift in the testing paradigm is in progress as the need for routine laboratory monitoring and frequent dose adjustments of warfarin is diminished by the introduction of the new oral anticoagulants.

The introduction of novel anticoagulation therapies has also prompted companies to identify new customer needs associated with detecting and monitoring these drugs. New approaches to coagulation testing will emerge to address the changing landscape of anticoagulation and antiplatelet drugs. Although these new oral antithrombotic agents do not require routine monitoring, detection assays would be extremely helpful for investigating unexplained bleeding episodes, checking patient compliance, or addressing concerns about dosages for patients with conditions outside the norm such as situations where patients' pharmacokinetics and pharmacodynamics of the drug are altered (e.g., impaired liver and kidney functions or pregnancy).

The advent of new anticoagulation and antiplatelet drugs is also driving the need for greater standardization across the many different coagulation assay protocols. Since the U.S. coagulation testing market tends to follow a whole system approach, companies are incorporating reagents for multiple assays to be run on the same device. Thus, the market for quality control products and services will also benefit from the diversification of on-board assays.

In spite of the introduction of novel oral anticoagulants, traditional agents such as warfarin are expected to continue to play a role in a significant subset of patients. For those patients, future models of care will entail patient-centered self-testing and self-management. The incorporation of technology (i.e., Web-based expert systems) is also expected to further improve outcomes.

The contraction of the hospital system and technological advances will facilitate decentralization of the coagulation testing, thus creating POC opportunities and challenges for suppliers. Like their central laboratory counterparts, there is now a trend to incorporate esoteric anticoagulant assays into the POC instruments. Portability, connectivity, and ease of use still top the list of desired POC device characteristics. New technologies that will likely impact the field of POC coagulation testing in the decade include lab-on-a-chip type devices and non-invasive blood coagulation monitors.

The worldwide coagulation testing market, which encompasses both laboratory and POC testing, in [2013] is valued at $[2013] and is expected to grow at a CAGR of [2013] to $[2018] by [2018]. Laboratory coagulation testing is estimated to be in the top ten professional diagnostics markets worldwide and POC testing continues have a strong presence in the coagulation testing market. In fact, POC coagulation testing accounts for approximately [2018]% of the total coagulation testing market dollar volume, and is expected to increase to about [2018]% of the coagulation testing market by [2018].

The U.S. coagulation testing market, which encompasses central laboratory, doctor’s office and POC testing, in [2013] is valued at $[2013] and is expected to grow at a CAGR of [2013] to $[2018] by [2018]. The most frequently performed coagulation tests in U.S. laboratories are the prothrombin time (PT) and the activated partial thromboplastin time (aPTT) assays, with an estimated annual test volume of [2013] and [2013] respectively. Bleeding times, fibrinogen assays and D-dimer assays round out the top five most common tests in U.S. laboratories. Not surprisingly, larger hospital laboratories perform a greater number of coagulation tests in house as compared to smaller institutions.

The U.S. coagulation testing market is closely linked with the U.S. anticoagulation drug market, which is slated to increase from $[2013] in [2013] to $[2018] by [2018] with a CAGR of [2018]% The U.S. anti-coagulant market is subtly undergoing a visible shift in clinical practice. It is shifting from a market monopolized by a single injectable anticoagulant to the simple once-daily oral anticoagulants. Although warfarin remains the market leader, the entry of Pradaxa (dabigatran) in [2010] and Xarelto (rivaroxaban) in [2011] has changed the market dynamics. Two other drugs waiting for approvals are Eliquis (apixaban) and edoxaban. These two drugs are expected to dominate the partially untapped market of stroke prevention in atrial fibrillation (AF). Further, these two drugs are expected to seize a large market share from the parenteral anticoagulants used in joint replacement surgeries. Notably, neither of these drugs is monitored by the ever present INR (prothrombin ratio), which is used to follow patients on warfarin.