BLOOD GLUCOSE TESTING AND DIABETES MANAGEMENT

(SAMPLE COPY, NOT FOR RESALE)

Trends, Industry Participants, Product Overviews and Market Drivers
TABLE OF CONTENTS

1. Overview 12
 1.1 Statement of Report 12
 1.2 About This Report 12
 1.3 Scope of the Report 13
 1.4 Methodology 14
 1.5 Executive Summary 15

2. Diabetes 20
 2.1 Demographics of Diabetes 21
 2.1.1 Worldwide Diabetes Incidence 21
 2.2 Understanding the Metabolic Conditions Underlying and Associated with Diabetes 30
 2.2.1 Pre-Diabetes Syndrome 31
 2.2.2 Metabolic Syndrome 31
 2.2.3 Progression of Diabetes 31
 2.2.4 Diabetes and Inflammation 32
 2.2.5 Risk Factors and Diabetes 32
 2.2.5.1 Obesity 33
 2.2.5.2 Stress-Induced Hyperglycemia 35
 2.2.6 Complications and Co-Morbidities in Diabetes 36
 2.2.6.1 Preventing Complications and Co-Morbidities in Diabetes 40
 2.2.7 Cardiovascular Disease Facts 41
 2.3 Economics of Diabetes 44
 2.3.1 Worldwide Costs of Diabetes 45
 2.3.2 Costs of Diabetes in the U.S. 45

3. Market Analysis: Size, Growth, Share and Competitors 50
 3.1 Worldwide Glucose Testing Market 51
 3.1.1 Global Blood Glucose Self-Testing Market 53
 3.1.2 Worldwide Professional Blood Glucose Testing Market 56
 3.1.3 Continuous Glucose Monitoring Markets 57
 3.2 U.S. Market 58
 3.2.1 U.S. Over-the-Counter (OTC) Self-Testing Glucose Market 59
 3.2.2 U.S. Professional Glucose Testing Market 63
 3.3 European Market 64
 3.4 Asian Market 65
 3.4.1 Japanese Market 67
 3.4.2 Chinese Market 68
 3.4.3 Indian Market 71
 3.4.4 Korean Market 73
 3.4.5 Southeast Asian Market 73
 3.4.6 ROW Markets 75
 3.5 Competitive Situation 75
 3.5.1 Key Players in the Self-Testing Market 75
 3.5.2 Analyses of the Self-Testing Market Conditions, Competition and Product Mix 76
 3.5.3 Analyses of the Professional Blood Glucose Monitoring Market 78
 3.6 Market Drivers and Restraints 81
 3.6.1 Market Drivers 81
 3.6.2 Market Restraints 83
 3.7 Market and Product Trends 85
 3.7.1 Market Trends 86
 3.7.2 Technology Trends 86
 3.8 Strategic Recommendations 87
4. Glucose Diagnostic and Monitoring Recommendations 92
 4.1 Diagnosis of Diabetes Mellitus 92
 4.2 Tight Glucose Control in Treating Diabetes 95
 4.2.1 Tight Glucose Control Lowers Cardiovascular Complications 96
 4.3 Recommendations for Glucose Control in Diabetic Patients 96
 4.3.1 Recommended Frequency of Blood Glucose Testing 98
 4.3.2 Using Blood Glucose Data to Monitor and Modify Patient Therapy 99
 4.3.3 Testing in Individuals with Type 2 Diabetes 100
 4.3.4 Continuous Glucose Monitoring (CGM) 101
 4.3.5 A1c Testing Recommendations 102
 4.3.6 Blood Glucose Testing for All Hospitalized Patients According to Guidelines by The Endocrine Society 103
 4.4 Hypoglycemia and Treatment 103

5. Glucose Testing Technology Platforms and Consumable Products 106
 5.1 Types of Glucose Determination Technologies 106
 5.2 Enzymatic Reactions Used to Determine Glucose Concentrations 107
 5.2.1 Glucose Oxidase (GOX) 107
 5.2.2 Glucose Dehydrogenase (GDH) 108
 5.2.2.1 GDH-NAD (Glucose Dehydrogenase-Nicotinamide Adenine Dinucleotide) 108
 5.2.2.2 GDH-FAD (Glucose Dehydrogenase-Flavin Adenine Dinucleotide) 108
 5.2.2.3 GDH-PQQ (Glucose Dehydrogenase-Pyrroloquinoline Quinone) 108
 5.2.3 Glucose Hexokinase 109
 5.3 Development of Blood Glucose Monitors: A Historical Evaluation 109
 5.3.1 First-Generation Blood Glucose Biosensors 109
 5.3.2 Second-Generation Blood Glucose Biosensors 109
 5.3.3 Third-Generation Blood Glucose Biosensor 110
 5.4 Accuracy and Precision in Glucose Meters 110
 5.4.1 Clinical and Laboratory Standards Institute (CLSI) POCT12-A3 111
 5.4.2 International Organization for Standardization (ISO) 15197:2013 112
 5.4.3 FDA Guidelines for Blood Glucose Testing Systems 112
 5.4.4 Determining Clinical Accuracy Using the Error Grid Analysis (EGA) 115
 5.4.5 Quality Control Criteria 116
 5.4.6 Potential Variables Affecting Glucose Concentrations 117
 5.5 Key Issues for Glucose Testing Devices 117
 5.5.1 Important Elements for Glucose Testing 118
 5.5.2 Key Features to Aid Specific Patient Populations 119
 5.6 Limitations of Existing Glucose Testing 120
 5.6.1 Common User Errors in Glucose Self-Testing 121
 5.6.2 Interfering Substances and Conditions 122
 5.6.2.1 Environmental 122
 5.6.2.2 Physiologic 122
 5.6.2.3 Operational 122
 5.6.2.4 Manufacturing Variations 122
 5.6.2.5 Drugs/Medications 122
 5.6.2.6 Patient Factors 122
 5.6.3 Errors Associated with GDH-PQQ Technology 123
 5.6.4 Optimizing of Point of Care (POC) Blood Glucose Testing 126
 5.7 Potential Areas of Improvement in Blood Glucose Meter Performance 126
 5.8 Blood Glucose Reagent Test Strips 128
 5.9 Comparison of Hand-Held Blood Glucose Meters with Clinical Laboratory Glucose
Measurements 129
5.10 Continuous Glucose Monitoring Technology 130
5.10.1 Advantages of Continuous Readings 130
5.10.2 FDA Approval of CGM 130
5.10.3 CGM Functions to Consider 131
5.10.4 New Technologies for CGM 131
5.11 Summary of Technologies Being Explored for Non-Invasive Glucose Monitoring 132
5.11.1 GlucoTrack 132
5.11.2 Non-Invasive Glucose Monitoring Technologies in Development 132
5.11.3 Goals of Non-Invasive Testing 133
5.11.4 Non-Invasive Diabetes Screening Test 134
5.12 A1c Monitoring Technology 134
5.13 Fructosamine Test 136
5.14 Related Reagents and Equipment 137
5.14.1 Lancets 137
5.14.1.1 Types of Lancing Devices 137
5.14.1.2 Market Size 138
5.14.2 Control Solutions and Calibrators 143
5.14.3 Sharps Devices 143
5.14.4 Needle Destruction Devices 144
5.14.5 Urine Strips 144
5.14.6 Ketone Testing 146

6. Glucose Testing Devices on the Market 148
6.1 Hand-Held Blood Glucose Meters and Strips for Self-Testing 148
6.1.1 LifeScan 151
6.1.2 Roche Diagnostics Corporation 154
6.1.3 Bayer 155
6.1.4 Abbott (MediSense) 157
6.1.5 AgaMatrix, Inc. 159
6.1.6 ARKRAY, Inc. 160
6.1.7 Bionime Corporation 162
6.1.8 BioSense Medical Devices 163
6.1.9 CVS/pharmacy 164
6.1.10 Diabetic Supply of Suncoast 164
6.1.11 Entra Health Systems 164
6.1.12 Fifty50 Pharmacy 165
6.1.13 Fora Care 165
6.1.14 Genesis Health Technologies 166
6.1.15 GlucoCom 166
6.1.16 Infopix 166
6.1.17 Nipro Diagnostics, Inc. 167
6.1.18 Nova Biomedical 168
6.1.19 Oak Tree International Holdings, Inc. 169
6.1.20 Omnis Health 169
6.1.21 Phylosis 169
6.1.22 Prodigy Diabetes Care, LLC (an Affiliate of Diagnostic Devices, Inc.) 169
6.1.23 Sanofi 170
6.1.24 Target 170
6.1.25 Telcare 171
6.1.26 Tyson Biomedical 171
6.1.27 US Diagnostics, Inc. 171
6.1.28 Walgreens 172
6.1.29 Walmart 172
6.1.30 77 Elektronika Kft. 172
6.1.31 A. Menarini Diagnostics 173
6.1.32 All Medicus 173
6.1.33 i-SENS 173
6.1.34 Apex Biotechnology Corp. 174
6.1.35 Glucoplus, Inc. 174
6.1.36 Polymer Technology Systems 174
6.1.37 Smiths Medical MD, Inc. 174
6.1.38 TaiDoc Technology Corp. 174
6.1.39 IN4 Technology Corporation 175
6.1.40 ACON Laboratories, Inc. 175
6.1.41 Pepex Biomedical 176
6.1.42 HMD BioMedical 176
6.1.43 BTNX 176
6.1.44 Shasta Technologies and Decision Diagnostics Corporation 176
6.2 Point of Care Blood Glucose Meters for Professional Use 177
6.2.1 Abbott 179
6.2.1.1 Precision Xceed Pro Blood Glucose and Beta-Ketone Monitoring System 179
6.2.1.2 i-STAT System 179
6.2.2 ACON Laboratories 180
6.2.2.1 On Call Platinum Blood Glucose Monitoring System 180
6.2.3 Alere 180
6.2.3.1 epoc Blood Analysis System 180
6.2.3.2 Alere Cholestech LDX System 180
6.2.4 ARKRAY, Inc. 181
6.2.4.1 Assure Platinum, Assure Pro, and Assure 4 181
6.2.5 EKF Diagnostics 181
6.2.5.1 Biosen Series of Glucose and Lactate Analyzers 181
6.2.6 HemoCue (a Quest Diagnostics Company) 181
6.2.6.1 HemoCue Glucose 201 and Glucose 201 DM Systems 181
6.2.7 HMD BioMedical 182
6.2.7.1 NS100 182
6.2.8 Medtronic 182
6.2.8.1 iPro Continuous Glucose Monitor 182
6.2.9 Nova Biomedical 182
6.2.9.1 StatStrip Hospital Glucose Monitoring System 182
6.2.10 Polymer Technology Systems 182
6.2.10.1 CardioChek PA Point of Care Device 182
6.2.11 Roche 183
6.2.11.1 Accu-Chek Inform II System 183
6.2.11.2 Accutrend Plus System 183
6.2.12 Techno Medica Co., Ltd. 183
6.2.12.1 GASTAT-mini 183
6.2.13 LifeScan 184
6.3 Clinical Blood Chemistry Analyzers 184
6.3.1 Abaxis, Inc. 185
6.3.2 Alere 186
6.3.3 ARKRAY, Inc. 186
6.3.4 Beckman Coulter 187
6.3.5 DiaSys 187
6.3.6 Instrumentation Laboratory 187
6.3.7 International Technidyne Corporation (ITC) 188
6.3.8 Nova Biomedical 188
6.3.9 Radiometer 189
6.3.10 Roche 189
6.3.11 Siemens Healthcare Diagnostics 190
6.3.12 Span Diagnostics 193
6.3.13 Stanbio Laboratory 193
6.3.14 Techno Medica Co., Ltd 193
6.3.15 YSI Life Sciences 194
6.4 Continuous Glucose Patient Monitoring Systems 194
6.4.1 Medtronic’s Continuous Glucose Monitoring Systems (CGMS) 196
6.4.2 DexCom, Inc. G4 Platinum Continuous Glucose Monitoring System 198
6.4.3 FreeStyle Navigator—Abbott’s Continuous Glucose Monitor System 199
6.4.4 GlucoDay S Continuous Glucose Monitor 200
6.4.5 Minimally-Invasive Continuous Glucose Monitors in Development 200
6.4.5.1 GlySens, Inc. 200
6.4.5.2 Senseonics (Formerly Sensors for Medicine and Science) 201
6.4.5.3 Ultradian 201
6.4.5.4 GluMetrics 202
6.5 Non-Invasive Glucose Patient Monitoring Systems 202
6.5.1 Cygnus GlucoWatch Biographer 203
6.5.2 AiMedics Pty Ltd. 203
6.5.3 BioTex, Inc. 204
6.5.4 Echo Therapeutics, Inc. 204
6.5.5 EyeSense GmbH 205
6.5.6 Integrity Applications Ltd. 205
6.5.7 LighTouch Medical, Inc. 206
6.5.8 OrSense Ltd. 206
6.5.9 VeraLight, Inc. 206
6.5.10 Xhale, Inc. 207
6.5.11 Lein Applied Diagnostics 207
6.6 A1c Testing 207
6.7 New Product Launches 208
6.7.1 OneTouch Verio Sync Blood Glucose Monitoring System 208
6.7.2 Medtronic’s MiniMed 530G with Enlite Sensor Technology 208
6.7.3 Contour Next Link Meter Approved for Use with Medtronic’s New MiniMed 530G with Enlite Insulin Pump System 208
6.7.4 Roche’s ACCU-CHEK Inform II System Approved by the FDA 208
6.7.5 Abbott Receives CE Mark for FreeStyle Optium Neo Blood Glucose and Ketone Monitoring System 209
6.7.6 Abbott Receives FDA Clearance for FreeStyle Precision Pro Blood Glucose and ²-Ketone Monitoring System 209
6.7.7 LabStyle Innovations’ Dario Diabetes Management System 209
6.7.8 BlueStar by WellDoc 209
6.7.9 FDA Approves Bayer’s Contour Next EZ 210
6.7.10 Glooko Received its Second 510(k) Clearance for Glucose Monitoring Logbook App 210
6.7.11 Sanofi-Aventis’s iBGStar 210
6.7.12 iHealth Glucose Meter Device 211
6.7.13 MyGlucoHealth Diabetes 211
6.7.14 gDrive 211
6.7.15 Enlite Sensor 211
6.7.16 Abbott’s FreeStyle InsuLinx 212
6.7.17 Roche Diagnostics launches Accu-Chek Mobile 212
6.7.18 Medtronic Announces Mac Compatibility for CareLink Personal Therapy Management Software for Diabetes 212
6.7.19 Telcare Receives FDA Clearance for its Telcare BGM 3G Blood Glucose Meter 212
6.7.20 OneTouch SelectSimple 213
6.7.21 Shasta GenStrips 213
6.7.22 Medtronic Gains Approval of First Artificial Pancreas Device System, the MiniMed 530G with Enlite 213

© 2014 TriMark Publications, LLC. All rights reserved.
6.8 Blood Glucose Meters, CGMs, and Data Management Software in Development 213
6.8.1 Abbott’s Flash Glucose Monitoring System 213
6.8.2 Google Announces Plan to Create Contact Lens Glucose Sensors 213
6.8.3 Socrates Health Solutions’ Companion Blood Glucose Monitor 214
6.8.4 DexCom and Johnson and Johnson’s Animas Working to Develop an Artificial Pancreas 214
6.8.5 Medtronic Enrolling Patients into Trial Testing Third-Generation, Fully-Automated Artificial Pancreas 214
6.8.6 Boston University’s Bionic Pancreas Project 214
6.9 Recent Industry Activity 214
6.9.1 Roche Diagnostics Corp. Cutting Jobs in Diabetes Division 214
6.9.2 AgaMatrix and Sanofi-Aventis Enter Global Diabetes Partnership 214
6.9.3 LifeScan, Inc. Terminates Exclusive Supply Agreement with Medtronic MiniMed 215
6.9.4 Kroger Selects WaveSense Diabetes Testing Products 215
6.9.5 Medtronic and Bayer Healthcare Expand International Alliance 215
6.9.6 PositiveID Corporation and IDEAL LIFE Partner to Bring iglucose to Market for Wireless Diabetes Management 215
6.9.7 Roche Diagnostics U.S. and DexCom, Inc. Announce Research and Development Agreement 215
6.9.8 BD and JDRF Collaborating on a Device Using a Single Infusion Catheter for Both CGM and Pump 216
6.9.9 Court Sides with Decision Diagnostics in Patent Infringement Case 216
6.10 M&A Activity 216
6.10.1 Home Diagnostics, Inc. and Nipro Diabetes Systems, Inc. Merge to Become Nipro Diagnostics, Inc. 216
6.10.2 Medtronic, Inc. Acquires New Diabetes Technology from PreceiSense AS 216
6.10.3 Geonostics Acquires FlexSite’s Consumer Diabetes Tests 217
6.10.4 Radiometer Medical Acquires Hemocue 217
6.10.5 Additional M&A 217
6.10.6 Important Deals in BGM Market 218

7.1 Drivers of Clinical Glucose Testing 219
7.2 Competition for Professional POC Glucose Testing 219
7.3 Healthcare Cost Controls 219
7.4 Changes in Patient Management 220
7.5 Regionalization of Laboratory Care 220
7.6 Satellite Facilities 221
7.7 Professional Point of Care Testing 221
7.8 Factors Affecting OTC Medical Product Distribution 222
7.9 Drug Stores Critical to the Diabetic Care Category 224
7.10 Drivers of OTC and Self-Testing Markets 224
7.10.1 Brand Loyalty 224
7.11 Cost Elements of Glucose Self-Testing 225
7.12 Costs of Doing Business in Europe 225
7.13 Drivers of European Diagnostics Testing 226
7.14 Cost Containment in Europe 226
7.15 Blood Glucose Self-Testing Insurance Coverage and Reimbursement 226
7.15.1 American OTC Testing and Self-Testing Reimbursement 226
7.15.2 European Reimbursement 227
7.16 Trends in U.S. Laboratory Testing Reimbursement Practices 228
7.17 Reimbursement Challenges 229
7.17.1 New Medicare Part B 230
7.18 Managed Care 230
7.19 Government Regulation of Medical Devices 230
7.19.1 U.S. Regulations 230
7.19.2 E.U. Regulations 233
7.19.3 U.K. Regulations 238
7.20 Clinical Laboratory Improvement Act (CLIA) 239
7.21 FDA Labeling Requirements 241
7.22 Legal Liability for Glucose Meters 243
7.23 FDA’s Artificial Pancreas Guidance Document 243

8. Technology Trends 244
8.1 Improving Today’s Over-the-Counter (OTC) Blood Glucose Meters 244
8.2 Biosensor Technology 245
8.3 Artificial Pancreas 247
8.4 Telemedicine 248
8.4.1 Remote Patient Monitoring 251
8.4.1.1 Infopia Eocene System 253
8.4.1.2 Health Buddy Systems Monitoring Technologies 254
8.4.1.3 GlucoCom Glucose Monitoring System 254
8.4.1.4 Alere’s DayLink Monitor 254
8.4.1.5 Alere HomeLink Receives FDA Approval for Over-the-Counter Use 255
8.5 Non-Traditional Methods for Sample Collection 255
8.6 Data Management 255
8.6.1 Medical Device Radiocommunications Service (MedRadio) 255
8.6.2 Connectivity 256
8.6.3 Advantages of Connectivity 257
8.6.4 Connectivity Platforms 258
8.6.5 DataLink Data Management System 259
8.6.6 RALS-Plus 260
8.6.7 FDA Required Software Verification 260
8.6.8 Information Management Advances 260
8.6.9 POL Laboratory Data Management 262
8.6.9.1 Electronic Medical Record Systems and Physician Office Laboratory Data Linking Software 263
8.6.9.2 Physician Office Laboratory Data Linking Software and Interface to the Laboratory Information System 264
8.6.9.3 Technical Problems of Connectivity 265
8.6.9.4 Web-Based Data Interface 265
8.6.10 HIT Competition 265

9. Company Profiles 267
9.1 Abaxis, Inc. 267
9.2 Abbott Laboratories 268
9.3 ACON Laboratories 272
9.4 AgaMatrix 272
9.5 Alere 272
9.6 All Medicus Co., Ltd. 273
9.7 Amedica Biotech 273
9.8 A. Menarini Diagnostics 273
9.9 Apex Biotechnology Corporation 274
9.10 ARKRAY 274
9.11 Bayer 274
9.12 B. Braun Melsungen 276
9.13 Beckman Coulter 276
9.14 Bionime 281
9.15 Bio-Rad Laboratories, Inc. 281
9.16 BioTex, Inc. 281
9.17 Calisto Medical, Inc. 281
9.18 Cambridge Sensors 282
9.19 DexCom 282
INDEX OF FIGURES

Figure 2.1: Worldwide Diabetes Cases, 2013 and 2035 21
Figure 2.2: Worldwide Prevalence of Diabetes (%) in Adults (20-79 Years), 2013 22
Figure 2.3: Annual Number of New Cases of Diagnosed Diabetes Among U.S. Adults Aged 18-79 Years, 1980-2011 25
Figure 2.4: New Cases of Diabetes Diagnosed in the U.S. Adult Population by Age, 2010 26
Figure 2.5: Prevalence of Diabetes by Age in the U.S., 2010 26
Figure 2.6: Diagnosed Diabetes by Age in the U.S., 2013 27
Figure 2.7: Number of Deaths from Diabetes by Age in the U.S., 2010 29
Figure 2.8: Number of Diabetes Deaths by Race and Sex in the U.S., 2010 29
Figure 2.9: Maintenance of Normal Blood Sugar Levels 30
Figure 2.10: Prevalence of Self-Reported Obesity (BMI ≥ 30) Among U.S. Adults, 2012 34
Figure 2.11: Prevalence of Obesity Among Adults in the U.S., 2009-2010 34
Figure 2.12: Trends in Obesity Among Children and Adolescents in the U.S., 1988-2010 35
Figure 2.13: Age-Adjusted Percentage of People with Diabetes Aged 35 Years or Older Reporting Heart Disease or Stroke, by Sex, in the U.S., 1997-2011 37
Figure 2.14: Percentage of Adults with Diagnosed Diabetes Reporting Any Mobility Limitation, by Age, in the U.S., 1997-2011 39
Figure 2.15: Number (in Millions) of Adults Aged 18 Years or Older with Diagnosed Diabetes Reporting Visual Impairment, in the U.S., 1997-2011 40
Figure 2.16: Mean Diabetes Healthcare-related Expenditures Per Adult (20-79 Years) with Diabetes (U.S. Dollars), 2013 45
Figure 2.17: How Diabetes Dollars are Spent in the U.S., 2012 47
Figure 3.1: Global Unit Sales of Glucose Testing Reagent Strips, 2013 53
Figure 3.2: Geographic Segments of the Worldwide Glucose Self-Testing Market, 2012 and 2018 54
Figure 3.3: Worldwide Glucose Self-Testing Market by Region, 2018 55
Figure 4.1: Approach to Management of Hypoglycemia 98
Figure 4.2: Glycemic Status—Ranges and Health Implications 105
Figure 5.1: EGA Zones of Clinical Accuracy 116
Figure 5.2: Single-Day Continuous Blood Glucose Data 121
Figure 5.3: Factors that May Adversely Affect Glucose Testing 123
Figure 5.4: Personal Lancet Unit Sales Market Share by Geographic Region, 2013 140
Figure 6.1: Medtronic’s Threshold Suspend Feature 197

INDEX OF TABLES

Table 2.1: Regional Estimates of the Number of Diabetes (20-79 Years) in Millions, 2013 and 2035 22
Table 2.2: Countries with the Largest Numbers of Diabetics, 2013 23
Table 2.3: Countries with the Largest Estimated Numbers of Diabetics, 2035 23
Table 2.4: Worldwide Undiagnosed Diabetes in Adults (20-79 Years) by Region and Income Group, 2013 24
Table 2.5: Countries with the Largest Number of Deaths Attributable to Diabetes, 2013 24
Table 2.6: U.S. Population of Diagnosed Diabetics Aged 20-79 Years, 2013 26
Table 2.7: Percentage of U.S. Adults with Diagnosed Diabetes by State, 2010 27
Table 2.8: Ten Leading Diagnoses for Co-Morbid Chronic Diseases in the U.S. 36
Table 2.9: Odds Ratio of Progression to Complications Associated with Type 2 Diabetes 38
Table 2.10: Prevalence of Complications Among Patients with Diabetes 38
Table 2.11: Novel Risk Factors and Possible Mechanisms of the Excess Risk of Coronary Heart Disease in Type 2 Diabetes Mellitus 38
Table 2.12: Major Causes of End-Stage Renal Disease 39
Table 2.13: Clinical Recommendations for Adults with Diabetes 41
Table 2.14: Laboratory Assessment of Diabetic Vascular Disease 41
Table 2.15: Average Years Gained Free of Diabetes-Related Disease with Intensive Management 41
Table 2.16: Estimated Direct and Indirect Costs of Major Cardiovascular Diseases and Stroke in the U.S., 2010 43
Table 2.17: Cost of Diagnosed Diabetes in the U.S., 2012 46
Table 2.18: Annual Cost of Care of United Healthcare Adult Members with Diabetes, 2009 48
Table 2.19: Healthcare Utilization by Diabetic Patients, 2012 48
Table 3.1: Worldwide Comprehensive Glucose Testing Market (Includes Reagents and Supplies in both the Self-Testing and Professional Markets in $ Billions), 2012-2018 52
Table 3.2: Total Global Unit Demand for Glucose Testing Reagent Strips, 2012-2018 52
Table 3.3: Global Dollar Sales of Glucose Testing Reagent Strips, 2012-2018 53
Table 3.4: Worldwide Glucose Self-Testing Market Sales (Meters, Strips, and Lancets), 2012-2018 54
Table 3.5: World Market Share of Glucose Self-Testing Marketers, 2013 56
Table 3.6: Global Revenues for Total Professional Blood Glucose Monitoring (Central Laboratory Testing and Hospital POC and POL), 2012-2018 57
Table 3.7: Global Revenues for Professional Point of Care Blood Glucose Monitoring Systems (within Hospitals and Physician’s Offices), 2012-2018 57
Table 3.8: Global Revenues for Continuous Glucose Monitoring Systems, 2012-2018 58
Table 3.9: Comprehensive Glucose Testing Market in the U.S. (Includes Reagents and Supplies in the Self-Testing and Professional Markets), 2012-2018 58
Table 3.10: U.S. Blood Glucose Reagent Strip Market (Includes both Self-Testing and Professional Markets), 2012-2018 59
Table 3.11: Market for Glucose Self-Testing in the U.S. (Includes Meters, Strips and Lancets), 2012-2018 59
Table 3.12: Market Share of U.S. Blood Glucose Self-Testing, 2013 60
Table 3.13: U.S. OTC Blood Glucose Self-Testing Market Repeat Retail Replacement Sales Percentages 61
Table 3.14: OTC Blood Glucose Instrument Reagents by Manufacturer Retail 61
Table 3.15: Demographic Characteristics Glucose Self-Testing Kit Buyers 62
Table 3.16: Top Brand Preferences for Glucose Self-Testing Kits 62
Table 3.17: Instances when Patients Prefer Professional’s Glucose Testing 62
Table 3.18: Advantages of a Glucose Self-Testing Kit 63
Table 3.19: Disadvantages of Using a Glucose Self-Testing Kit 63
Table 3.20: Popular Shopping Destinations for Buying or Seeking Information on Glucose Self-Testing Kits 63
Table 3.22: Market for Total Professional Glucose Testing (Central Laboratory and Hospital POC and POL) in the U.S., 2012-2018 64
Table 3.23: U.S. Revenues for Professional POC Blood Glucose Monitoring (Hospital and POL), 2012-2018 64
Table 3.24: European Comprehensive Glucose Testing Market (Includes Reagents and Supplies in the Self-Testing and Professional Markets), 2012-2018 65
Table 3.25: European Market for Glucose Self-Testing (Includes Meters, Strips and Lancets), 2012-2018 65
Table 3.26: Asian Comprehensive Glucose Testing Market (Includes Reagents and Supplies in the Self-Testing and Professional Markets), 2012-2018 66
Table 3.27: Asian Market for Glucose Self-Testing (Includes Meters, Strips and Lancets), 2012-2018 67
Table 3.28: Japanese Comprehensive Glucose Testing Market (Includes Reagents and Supplies in the Self-Testing and Professional Markets), 2012-2018 68
Table 3.29: Japanese Market for Glucose Self-Testing (Includes Meters, Strips and Lancets), 2012-2018 68
Table 3.30: Chinese Comprehensive Glucose Testing Market (Includes Reagents and Supplies in the Self-Testing and Professional Markets), 2012-2018 69
Table 3.31: Chinese Market for Glucose Self-Testing (Includes Meters, Strips and Lancets), 2012-2018 70
Table 3.32: Indian Comprehensive Glucose Testing Market (Includes Reagents and Supplies in the Self-Testing and Professional Markets), 2012-2018 72
Table 3.33: Indian Market for Glucose Self-Testing (Includes Meters, Strips and Lancets), 2012-2018 72
Table 3.34: Number of Clinical Labs in India, 2008 72
Table 3.35: Top Domestic IVD Companies in India 72
Table 3.36: Leading Global IVD Companies in India 73
Table 3.37: Southeast Asian Comprehensive Glucose Testing Market (Includes Reagents and Supplies in the Self-Testing and Professional Markets), 2012-2018 74
Table 3.38: Southeast Asian Market for Glucose Self-Testing (Includes Meters, Strips and Lancets), 2012-2018 74
Table 3.39: Southeast Asian Comprehensive Glucose Testing Market by Country, 2013 74
Table 3.40: Southeast Asian Market for Glucose Self-Testing by Country (Includes Meters, Strips and Lancets), 2013 74
Table 3.41: ROW Comprehensive Glucose Testing Market (Includes Reagents and Supplies in the Self-Testing and Professional Markets), 2012-2018 75
Table 3.42: ROW Market for Glucose Self-Testing (Includes Meters, Strips and Lancets), 2012-2018 75
Table 3.43: SWOT Analysis: Summary of Strengths, Weaknesses, Opportunities and Threats of the Glucose Point of Care Market 80
Table 3.44: Key Market Drivers for Glucose Testing 82
Table 3.45: Market Drivers for Continuous Glucose Monitoring 82
Table 3.46: Point of Care Glucose Testing Market: Market Drivers Ranked in Order of Impact 82
Table 3.47: Key Market Restraints for Glucose Testing 83
Table 3.48: Market Restraints for Continuous Glucose Monitoring 84
1. Overview

1.1 Statement of Report

There has been a dramatic increase in the incidence of diabetes worldwide, which has been exacerbated by the growing obesity problem across the globe. Once thought of as primarily a childhood disease—sometimes referred to as juvenile diabetes, now mostly Type 1 diabetes—the obesity crisis linked to the adoption of a high-fat, high-carbohydrate, high-calorie American diet has resulted in skyrocketing rates of diabetes, particularly Type 2 diabetes, among adults across the world. As such, the global market for blood glucose testing products is undergoing a significant transition driven by the advent of new analytical technologies and developments in diabetes treatment. Although the blood glucose testing segment of the *in vitro* diagnostics (IVD) industry is mature, certain segments of the market, such as home testing devices for diabetes management, will exhibit strong growth. What’s more, non-invasive testing now represents a major new area for the application of IVD testing. Additionally, direct access testing—or over-the-counter testing, which allows consumers to order tests themselves without visiting a doctor—has emerged as a strong force in the blood glucose testing segment.

The purpose of this TriMark Publications report is to describe the specific market segments for blood glucose testing and diabetes management. This study reviews all of the generally-accepted clinical analytical methods that are currently in use today for measuring serum or plasma or whole-blood glucose concentrations. Moreover, it examines clinical measurement devices, reagents and supplies as utilized in hospitals, clinics, doctor’s offices and at-home care locations.

1.2 About This Report

The main objectives of this analysis are:

- Identifying viable technology drivers through a comprehensive look at platform technologies for glucose testing for diabetes management.
- Understanding the different sectors of glucose testing, such as the home self-testing and the professional glucose testing segments.
- Obtaining a complete understanding of the individual glucose testing platforms from their basic principles to their clinical applications.
- Discovering feasible market opportunities by identifying high-growth applications in different analytical diagnostic areas.
- Focusing on global industry development through an in-depth analysis of the major world markets for glucose measurement technology, including growth forecasts.
- Presenting market figures regarding the current value of blood glucose testing, market projections, market share, key players and sector growth rates.
- Providing a detailed analysis of each of the major device categories, such as blood glucose meters (including non- and minimally-invasive), blood glucose meter test strips, lancets and lancing devices, and urine glucose/metabolite monitoring strips.

This analysis defines the dollar volume of market sales, both worldwide and in the U.S., and analyzes the factors that influence the size and the growth of the market segments. Key questions answered in this examination include:

- How can glucose measuring tools and technologies facilitate improved diabetes patient care?
- What are the main types of glucose testing technologies that are currently available?
- Who are the current key players in this marketplace?
- Which glucose testing market areas have the greatest potential for growth?
- What is the current state of the glucose testing market?
- Which diagnostic companies are investing in new glucose testing technology platform solutions?
- What are the main business strategies adopted by leading glucose testing companies?
- What are the benefits of various glucose testing technology platforms?
Additionally, this study contains:

- Detailed analysis of recent trends in the glucose testing marketplace.
- In-depth profiles of the leading companies with glucose testing tools and technologies.
- Perspectives of the glucose testing industry from leading industry experts.
- Analysis of potential new glucose testing applications in the clinical sector as they pertain to diabetes management.
- Market predictions and trends analysis concerning U.S. expenditures on glucose testing solutions.
- Projections of glucose testing market sizes for U.S., European and Asian markets.
- Projections for future applications of non-invasive tests in glucose testing-related screening.
- Review of commercial glucose testing business strategies such as co-branding.

Analysis includes charts and graphs measuring product growth and trends within the marketplace. Company-specific information—including sales figures, product pipeline status, and research and development (R&D) trends—is provided. Also, this review includes:

- Assessment of glucose testing market drivers and bottlenecks, from medical and scientific community perspectives.
- Discussions on the potential benefits of glucose testing for various sectors of the medical and scientific community, as they relate to diabetes management.
- The current total market size and future growth of the glucose testing market and analysis of the current size and growth of individual segments.
- Current and forecasted market shares by companies.
- Discussions on profit and business opportunities by segments.
- Strategic recommendations for near-term business opportunities.
- Analysis of the current commercial uses of the glucose testing market by diabetes management.

The following questions will also be addressed in this report:

- What are the near-term business opportunities in the glucose testing market?
- What are the current and forecasted glucose testing market sizes in the U.S., European Union (E.U.) and Japan, as well as in other emerging markets such as India and China?
- What are the business models currently used by companies in the glucose testing market?
- How will manufacturers, researchers, physicians and patients influence diabetes management?
- What are the drivers and bottlenecks influencing the glucose testing market?
- What are the barriers to entry for the glucose testing market?
- What are the key technologies used in glucose testing?
- Who holds the proprietary rights to the glucose testing market technology platforms?
- How is this technology currently being applied and utilized?
- In the U.S. and the E.U., what regulatory processes apply to glucose testing technologies?
- How will new glucose testing technologies change diagnostic screening/testing paradigms and reduce diagnostic false negatives and decrease costs of patient care?
- How will new glucose testing technologies reduce healthcare expenditures and affect R&D spending?

1.3 Scope of the Report

This analysis emphasizes companies that are actively developing and marketing instrumentation, reagents and supplies for performing glucose tests. The world’s three largest analytical markets, the U.S., Japan and Europe, are the primary focus here. Specific attention is paid to the clinical market segment and, separately, to the instruments, reagents and supplies marketed by major companies for the home self-testing market for diabetes management. Market size, growth rates and market components for instruments, reagents, controls and consumables used in this area are also analyzed. Activity and trends in research, including patterns of information processing in array testing.
instruments, are addressed. Also discussed are trends that have stimulated this market, the numbers of institutions that use glucose testing and the factors that influence purchasing.

This report surveys all companies known to be marketing, manufacturing or developing instruments and reagents for the glucose testing market, for each of the major market segments of professional glucose testing, and self-monitoring of blood glucose. There are also sections on the companies’ histories, product lines, business and marketing analyses, and a subjective commentary on the key companies’ market positions. In-depth analysis of diabetes management and glucose self-testing can be found in other TriMark Publications reports at www.trimarkpublications.com, such as TriMark’s Diabetes, Metabolic Syndrome and Cardiovascular Disease and World Glucose Self-Testing Markets.

1.4 Methodology

The author of this report is a Ph.D. in biochemistry from the University of Minnesota, with many decades of experience in science writing and as a medical industry analyst. He has over 30 years of experience in laboratory testing, and instrument and reagent development technology, as well as extensive experience in senior level positions in biotech and medical service companies. The senior editor of this report holds a Master’s degree in immunology, and has substantial experience in science writing and as a medical industry analyst. She also has many years of laboratory experience investigating cancer immunotherapies, has conducted laboratory testing, and instrument and reagent development for biotech companies. The senior advisor is a Ph.D. in biochemistry and a Professor of pathology at Tufts University School of Medicine and Medical Director, Clinical Chemistry for Baystate Health in Springfield, Massachusetts. He is an internationally-renowned expert in the areas of laboratory automation, quality control informatics, therapeutic drug monitoring, clinical toxicology and pre-analytical variation.

Company-specific information is obtained mainly from industry trade publications, academic journals, news and research articles, press releases and corporate websites, as well as annual reports for publicly-held firms. Additionally, sources of information include the non-governmental organizations (NGOs) such as the World Health Organization (WHO), governmental entities like the U.S. Department of Health and Human Services (HHS), and U.S. federal agencies such as National Institutes of Health (NIH), Food and Drug Administration (FDA) and the Centers of Disease Control and Prevention (CDC). Where possible and practicable, the most recent data available have been used.

Some of the statistical information was taken from Biotechnology Associates’ databases and from TriMark’s private data stores. The information in this study was obtained from sources that we believe to be reliable, but we do not guarantee the accuracy, adequacy or completeness of any information or omission or for the results obtained by the use of such information. Key information from the business literature was used as a basis to conduct dialogue with and obtain expert opinion from market professionals regarding commercial potential and market sizes. Senior managers from major company players were interviewed for part of the information in this report.

Primary Sources

TriMark collects information from hundreds of Database Tables and many comprehensive multi-client research projects, as well as Sector Snapshots that it publishes annually. TriMark extracts relevant data and analytics from its research as part of this data collection.

Secondary Sources

TriMark uses research publications, journals, magazines, newspapers, newsletters, industry reports, investment research reports, trade and industry association reports, government-affiliated trade releases and other published information as part of its secondary research materials. The information is then analyzed and translated by the Industry Research Group into a TriMark study. The Editorial Group reviews the complete package with product and market forecasts, critical industry trends, threats and opportunities, competitive strategies and market share determinations.
TriMark Publications Report, Research and Data Acquisition Structure

The general sequence of research and analysis activity prior to the publication of every report in TriMark Publications includes the following items:

- Completing an extensive secondary research effort on an important market sector, including gathering all relevant information from corporate reporting, publicly-available data and proprietary databases.
- Formulating a study outline with the assigned writer, including important items, as follows:
 - Market and product segment grouping, and evaluating their relative significance.
 - Key competitors’ evaluations, including their relative positions in the business and other relevant facts to prioritize diligence levels and assist in designing a primary research strategy.
 - End-user research to evaluate analytical significance in market estimation.
 - Supply chain research and analysis to identify any factors affecting the market.
 - New technology platforms and cutting-edge applications.
- Identifying the key technology and market trends that drive or affect these markets.
- Assessing the regional significance for each product and market segment for proper emphasis of further regional/national primary and secondary research.
- Completing a confirmatory primary research assessment of the report’s findings with the assistance of expert panel partners from the industry being analyzed.

1.5 Executive Summary

Advances in diabetes treatment have revolutionized the blood glucose testing market. Direct access testing—which allows consumers to order and conduct tests themselves without visiting a doctor—has emerged as a strong force in the blood glucose testing segment. Indeed, there’s an increasing range of test devices now available to consumers to perform self-testing. Moreover, automation is now a well-established trend in the central clinical laboratory, driven primarily by efforts to reduce costs, and a continuing shortage of qualified technologists and technicians.

Information management, including Internet-based reporting and consultation—as well as remote data acquisition and result-reporting for point of care (POC) glucose testing—is becoming a more important element of many suppliers’ product offerings. The analysis and reporting of data from blood glucose tests is another area that will become increasingly important in the future. The risk for the later development of microvascular disease makes it important to identify patients with Type 2 diabetes (sometimes referred to as adult onset diabetes). Demonstration of unequivocal hyperglycemia (plasma glucose \(\geq 200 \text{ mg/dL} \) [\(\geq 11.1 \text{ mmol/L} \)]) two hours or more after a mixed meal is considered diagnostic for diabetes mellitus according to \(\text{American Diabetes Association} \). Moreover, HbA1C levels are now accepted as an indicator of diabetes. As such, frequent monitoring of blood glucose levels facilitates control of diabetes.

Worldwide, there are about \(\text{200 million diabetics according to } \text{International Diabetes Federation (IDF).} \) Due to rising rates of obesity and increased lifespan, the prevalence of diabetes is on the rise. By \(\text{global incidence of diabetes is expected to increase more than } \% \), \(\text{people worldwide. Despite this large patient population, the IDF estimates that, even now, only } \% \text{ of Type 2 diabetics have been diagnosed in the worldwide population. In light of this staggering worldwide prevalence of diabetes mellitus, there is increasing demand for effective monitoring of blood glucose and tight glucose control to delay disease progression, prevent diabetic complications and improve the quality of life for patients. Approximately } \text{ deaths were attributable to health complications arising from diabetes in } \text{, and the number of deaths continues to increase each year. The number of worldwide deaths due to diabetes increased } \% \text{ from } \text{ to } \text{. Nearly half of all deaths due to diabetes occurred in people under the age of 60.} \)

The ten countries containing the largest population of diabetic patients are: China, India, U.S., Brazil, Russian Federation, Mexico, Indonesia, Germany, Egypt and Japan. There are currently an estimated \(\text{people in the U.S. afflicted with diabetes (men } \% \text{, women } \% \text{, non-Hispanic black } \% \text{, non-Hispanic whites } \% \). An estimated \(\text{new cases of diabetes are diagnosed each year in the U.S.} \)
The sector for glucose testing devices is large, but very competitive and overpopulated. The comprehensive blood glucose testing market includes devices for use in physician office laboratory (POL), professional POCT in a variety of healthcare settings, self-testing and central labs. Worldwide, more than 80 companies market blood glucose monitors. In addition, there are a few large and fully diverse diagnostic companies that dominate the glucose testing sector. Primarily, the increasing number of diagnosed diabetic patients who closely monitor their own blood glucose values drives the blood glucose testing market, especially in the emerging markets. However, pricing pressures have reduced overall revenue growth to single digits. Although still in development, the non-invasive testing sector continues to attract more entrants to the industry and is heavily technology driven.

There are two key market segments for glucose testing: self-testing and professional testing. Self-testing glucose meters and strips were worth $[redacted] worldwide in [redacted] and are expected to grow to over $[redacted] by [redacted]. The U.S. self-testing diabetes diagnostic market for glucose monitoring devices was a $[redacted] market in [redacted]. The global professional glucose testing market, which includes POC in healthcare settings and central lab tests but excludes self-testing, was worth $[redacted] in [redacted]. The diabetic test strip market is very large and growing. Sales of blood glucose testing strips led the U.S. industry, with manufacturers’ sales of over $[redacted] in [redacted]. The hand-held glucose monitor market is dominated by the four large international companies: Roche, Johnson & Johnson (LifeScan), Bayer and Abbott.

There were approximately 56.3 million Europeans diagnosed with diabetes mellitus in [redacted] according to [redacted]. Left untreated, the number of diabetics in Western Europe is expected to reach [redacted] by [redacted]. Of this, 1% suffer from Type 1 diabetes. There are about 2% of European diabetic patients practicing self-glucose monitoring. The total European glucose monitoring market, which includes self-testing and professional glucose testing, reached $[redacted] in [redacted]. Growing at a compounded annual growth rate (CAGR) of 3%, the comprehensive European glucose monitoring market is estimated to be valued at $[redacted] by [redacted].

According to [redacted], the Southeast Asia and Western Pacific region is believed to have had at least [redacted] diabetics in [redacted] and by [redacted] the number of diabetes patients is expected to reach [redacted]. The rising incidence of diabetes has prompted a flourishing market, not only for the pharmaceutical manufacturers but also for companies producing diabetes monitoring devices and drug delivery systems. Japan, with an aging population and declining birthrates, is the most advanced country for medical care and diagnostic testing in the Asian region. In addition, as the two most populous countries in the world, China and India are hot spots for manufacturers of glucose meters.

According to industry experts, the market for blood glucose test strips, which comprise 85% of the U.S. blood glucose testing market, was approximately $[redacted] in [redacted] and is expected to grow to $[redacted] in [redacted] at a CAGR of 3%. Estimates place the global market for blood glucose strips at approximately $[redacted], growing at 4% per annum through [redacted]. The total home care lancet demand in the U.S. and E.U. was about [redacted] units and [redacted] units, respectively, in [redacted].

Clinical chemistry analyzers are positioned in hospitals, reference labs, independent labs, regional labs, and doctor’s offices. They range from the ultra-large to the small, based on their throughput (and price). Glucose testing occurs in virtually every chemistry profile put through these analyzers. The volume of glucose testing in these settings dwarfs the out-sized self-testing market in terms of numbers of tests. TriMark estimates more than [redacted] glucose tests are performed in the U.S. on these analyzers. However, the price per test is very low, on the order of ten or twenty cents per test, due to the efficiency of these highly engineered instruments.

The explosion of glucose monitoring devices on the market has given consumers an unprecedented choice of instruments and reagents to monitor blood glucose levels. It has also given manufacturers and developers of new technology a cohort of customers who are used to changing devices and are looking for new technologies. Underlying all of this is the classic “razor and razor blade” marketing model. Each manufacturer makes a different test strip, and they are not interchangeable from one monitor to another. Some even make a different strip for each individual monitor type. The reagents substantially drive sales, as costs and ease of use are large factors in customer choice.
Co-branding is one of the strategies that seem to offer smaller companies successful entry into the crowded glucose testing market and provides good market share. Co-branding is valuable to a device manufacturer in a number of ways:

- Manufacturers launch a co-branding program with a product line that represents the latest technology and the highest of quality standards.
- Co-branding sets the stage for a number of initiatives for other chronic disease products and services in the direct-to-consumer needs category.
- It raises the profile of smaller, less well-known companies. It leverages the marketing power of the pharmacy or retail co-brander for the small device manufacturer.

Additional recommendations include:

- Focusing diagnostic development on the significant and largely untapped global market that exists by creating more effective and affordable tests to manage diabetes.
- Developing better ways of monitoring glucose levels *in vivo* with continuous monitoring techniques.
- Moving to continuous glucose monitoring that may be partnered with insulin pumps to enable automated disease management using a closed loop system.
- Developing more accurate and reliable monitoring devices to take advantage of the increasing numbers of nursing home and other professional healthcare settings that are utilizing hand-held blood glucose monitoring products.