WOMEN’S HEALTH
DIAGNOSTIC TESTING
MARKETS

SAMPLE COPY, NOT FOR RESALE

Trends, Industry Participants, Product Overviews and Market Drivers
TABLE OF CONTENTS

1.0 Overview 7
1.1 Statement of Report 7
1.2 Scope of this Report 7
1.3 Methodology 8
1.4 Executive Summary 9

2.0 Introduction - Sector Overview 11
2.1 Global Diagnostic Products Industry 11

3.0 Women’s Health Testing Market Analysis in Size, Growth and Share 13
3.1 Global Women’s Health Testing Markets 13
3.1.1 Market Drivers in the Women’s Health Diagnostics Testing Sector 13
3.1.1.1 Market Segments for Women’s Health Testing 13
3.1.1.2 Key Players in the Women’s Health Diagnostics Testing Segment 14
3.1.1.3 Women’s Health Testing Sector Analysis 15
3.2 U.S. Women’s Health Testing Market 15
3.2.1 Market Overview 15
3.3 European Women’s Health Diagnostic Test Market 17
3.3.1 German Women’s Care Diagnostic Market 19
3.3.2 U.K. Women’s Care Testing Diagnostic Market 22
3.3.2.1 U.K. Market Statistics 22
3.3.2.2 U.K. Competitive Analysis 23
3.3.2.3 U.K. Market Access 24
3.3.3 French Women’s Care Diagnostic Market 25
3.3.4 Italian Women’s Care Diagnostic Market 25
3.3.5 Spanish Women’s Care Diagnostic Market 26
3.4 Japanese Women’s Care Testing Market 26
3.5 Chinese Women’s Care Market 27
3.6 Rest of the World Women’s Care Testing Market 28

4.0 Women’s Health Testing Individual Markets 30
4.1 Pregnancy Testing 30
4.2 Osteoporosis Testing 36
4.2.1 In Vitro Blood Tests 40
4.2.2 Bone Densitometry Devices 42
4.3 Prenatal Screening Testing 44
4.3.1 Cystic Fibrosis 45
4.3.2 Prenatal Genetic Testing 47
4.3.3 Fragile X Syndrome 49
4.3.4 Tay-Sachs Disease 49
4.4 Fertility Testing 49
4.5 Breast Cancer 52
4.5.1 CA 15-3 54
4.5.2 CA 27-29 54
4.5.3 BRCA1 Breast and Ovarian Cancer Gene 54
4.5.4 BRCA2 Breast Cancer Gene 54
4.5.5 Tissue polypeptide antigen (TPA) 56
4.5.6 DNA Ploidy and S-phase Fraction 56
4.5.7 Estrogen and Progesterone Receptor (ER and PR) 56
4.5.8 HER-2 56
4.5.9 HER-2 and Herceptin 57
4.5.10 p53 57
4.5.11 NMP66 57
4.5.12 Mammastatin 57
4.6 Ovarian Cancer 58
4.6.1 CA 125 II™ 58
4.6.2 Steroid Hormone Receptors 60
4.6.3 Epidermal Growth Factor Receptor (EGFR) 60
4.6.4 HER-2/neu 60
4.6.5 P53 Tumor Suppressor Gene 60
4.6.6 Lysophospholipids 60
4.7 Cervical Cancer 61
4.7.1 Pap Smears 62
4.7.2 Human Papillomavirus (HPV) Testing 65
4.8 Miscellaneous Testing 69
4.8.1 Estriol 69
4.8.2 Fetal Fibronectin (fFN) 70
4.8.3 Vaginal pH and Vaginitis 70
4.9 Human Immunodeficiency Virus (HIV) 71
4.10 Infectious Disease Testing 72
4.10.1 Strep Testing 72
4.10.2 Chlamydia 75
4.10.3 Methicillin-Resistant Staphylococcus Aurea (MRSA) 76
4.10.4 Hepatitis 77
4.10.4 Gonorrhea 81
4.10.5 Urinary Tract Infections 81
4.11 Infant Jaundice 81

5.0 World Mammography Market 83
5.1 Mammography Overview 84
5.2 Market Overview 91
5.2.1 Introduction 91
5.2.2 World Mammography Markets Revenue 91
5.2.3 Mammography Markets by Region 92
5.2.4 Total Market Share 92
5.2.5 Competitive Structure 92
5.3 Market Opportunities 93
5.3.1 Resource Management for Mammography Markets 93
5.3.2 Movement to Higher Reimbursement Rates 93
5.3.3 Market Benchmarks for Increased Mammography Utilization 93
5.4 Market Analysis 93
5.4.1 Strategic Partnerships 93
5.4.2 Long Term Trends 94
5.5 Strategic Outlook 94
5.5.1 Competitive Elements of Mammography Markets 94
5.5.2 Higher Reimbursement Rates 94
5.5.3 Volume Requirements 95
5.5.4 Product Innovation 95
5.5.5 Product Leadership 95
5.5.6 Product Line Strategy 95
5.5.7 Pricing Strategy & Reimbursement 95
5.5.8 Strategic Partnerships 96
5.6 Film-Based Mammography Market 99
5.6.1 Market Overview 99
5.6.1.1 Unit and Revenue Forecasts 99
5.6.1.2 Product Analysis 99
5.6.2 Market Drivers 100
5.6.3 Market Restraints 101
5.6.4 Film-Based Mammography Market and Technology Trends 102
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.6.5 U.S. Market for Film-Based Screening Systems</td>
<td>102</td>
</tr>
<tr>
<td>5.6.5.1 Unit Shipment and Revenue Forecasts</td>
<td>102</td>
</tr>
<tr>
<td>5.6.5.2 Competitive Analysis</td>
<td>103</td>
</tr>
<tr>
<td>5.6.5.3 U.S. Installed Base Analysis</td>
<td>103</td>
</tr>
<tr>
<td>5.6.6 European Market for Film-Based Mammography Systems</td>
<td>103</td>
</tr>
<tr>
<td>5.6.6.1 Unit Shipment and Revenue Forecasts</td>
<td>104</td>
</tr>
<tr>
<td>5.6.6.2 Competitive Analysis</td>
<td>104</td>
</tr>
<tr>
<td>5.6.6.3 Installed Base Analysis</td>
<td>104</td>
</tr>
<tr>
<td>5.6.7 Japanese (Pacific Rim) Market for Film-based Mammography Systems</td>
<td>105</td>
</tr>
<tr>
<td>5.6.7.2 Competitive Analysis</td>
<td>105</td>
</tr>
<tr>
<td>5.6.7.3 Installed Base Analysis</td>
<td>106</td>
</tr>
<tr>
<td>5.6.8 Rest of the World Market for Film-based Mammography Systems</td>
<td>106</td>
</tr>
<tr>
<td>5.6.8.1 Unit Shipment and Revenue Forecasts</td>
<td>107</td>
</tr>
<tr>
<td>5.6.8.2 Installed Base Analysis</td>
<td>107</td>
</tr>
<tr>
<td>5.6.9 Digital X-Ray Mammography Market</td>
<td>107</td>
</tr>
<tr>
<td>5.6.9.1 Digital Mammography Overview</td>
<td>107</td>
</tr>
<tr>
<td>5.6.9.2 Market Overview</td>
<td>108</td>
</tr>
<tr>
<td>5.6.9.3 Product Background</td>
<td>110</td>
</tr>
<tr>
<td>5.6.9.4 Product Description</td>
<td>110</td>
</tr>
<tr>
<td>5.6.9.5 Market Drivers</td>
<td>115</td>
</tr>
<tr>
<td>5.6.9.6 Market Restraints</td>
<td>116</td>
</tr>
<tr>
<td>5.6.9.7 Unit Shipment and Revenue Forecasts</td>
<td>118</td>
</tr>
<tr>
<td>5.6.9.8 Percentage Breakdown of Revenues by Region</td>
<td>119</td>
</tr>
<tr>
<td>5.6.9.9 Market Share</td>
<td>120</td>
</tr>
<tr>
<td>5.6.9.10 U.S. Market for Digital Mammography Systems</td>
<td>120</td>
</tr>
<tr>
<td>5.6.9.10.1 U.S. Sales</td>
<td>120</td>
</tr>
<tr>
<td>5.6.9.10.2 Competitive Analysis</td>
<td>120</td>
</tr>
<tr>
<td>5.6.9.11 European Market for Digital Mammography Systems</td>
<td>121</td>
</tr>
<tr>
<td>5.6.9.11.1 Unit Shipment and Revenue Forecasts</td>
<td>121</td>
</tr>
<tr>
<td>5.6.9.11.2 Competitive Analysis</td>
<td>122</td>
</tr>
<tr>
<td>5.6.9.11.3 Installed Base Analysis</td>
<td>123</td>
</tr>
<tr>
<td>5.6.9.12.1 Unit Shipment and Revenue Forecasts</td>
<td>123</td>
</tr>
<tr>
<td>5.6.9.12.2 Competitive Analysis</td>
<td>123</td>
</tr>
<tr>
<td>5.6.9.12.3 Installed Base Analysis</td>
<td>124</td>
</tr>
<tr>
<td>5.7.0 Women’s Health Testing: Growth Regulators</td>
<td>125</td>
</tr>
<tr>
<td>5.7.1 Moderators of Growth</td>
<td>125</td>
</tr>
<tr>
<td>5.7.2 Personnel Acceptance</td>
<td>125</td>
</tr>
<tr>
<td>5.7.3 Key People for Women’s Health Testing</td>
<td>126</td>
</tr>
<tr>
<td>5.7.4 Key Elements for Women’s Health Testing</td>
<td>126</td>
</tr>
<tr>
<td>5.7.5 Women’s Health Testing and Reimbursement</td>
<td>126</td>
</tr>
<tr>
<td>5.7.6 Rapid Near-Patient Testing in Hospitals</td>
<td>128</td>
</tr>
<tr>
<td>5.7.7 Satellite Facilities</td>
<td>128</td>
</tr>
<tr>
<td>5.7.8 Regionalization of Laboratory Care</td>
<td>129</td>
</tr>
<tr>
<td>5.7.9 Requirements for Women’s Health Testing</td>
<td>130</td>
</tr>
<tr>
<td>5.7.10 Clinical Laboratory Improvement Act of 1988 (CLIA)</td>
<td>130</td>
</tr>
<tr>
<td>5.7.11 Business Trends in the Industry</td>
<td>132</td>
</tr>
<tr>
<td>5.7.12 Sector Consolidation</td>
<td>132</td>
</tr>
<tr>
<td>5.7.13 Diagnostic Testing Growth Trends</td>
<td>132</td>
</tr>
<tr>
<td>5.7.14 Acquisition, License Agreements, Internal Development and Partnerships</td>
<td>133</td>
</tr>
<tr>
<td>5.7.15 Product Testing Depth in Women’s Health Testing</td>
<td>135</td>
</tr>
<tr>
<td>5.7.16 Government Regulation</td>
<td>135</td>
</tr>
<tr>
<td>5.7.17 U.S. Regulation</td>
<td>136</td>
</tr>
<tr>
<td>5.7.18 Importing Medical Devices into the U.S.</td>
<td>137</td>
</tr>
</tbody>
</table>
7.5.1.2 Exporting Medical Devices from the U.S. 138
7.5.2 U.K. Regulation 138
7.5.3 E.U. Regulation 139
7.5.4 Japanese Regulation 141
7.6 Increased Market Penetration 141
7.7 Legal Issues 141

8.0 Important Technology Trends 143

9.0 Company Profiles 145
9.1 Abbott Diagnostics 145
9.2 Accurex Biomedical, Pvt., Ltd 148
9.3 Adeza Biomedical Corporation (Acquired by Hologic) 148
9.4 Agfa-Gevaert Corporation 148
9.5 Ambri Ltd. 148
9.6 American Biomedica Corp. (ABMC) 149
9.7 Analogic Corporation 150
9.8 Axis-Shield Plc. 150
9.9 Becton Dickinson (BD) 151
9.10 Biomerica, Inc. 151
9.11 Capintec, Inc. 152
9.12 Carestream Health, Inc. 152
9.13 CMT Medical Technologies Ltd. 153
9.14 Concateno Plc. 153
9.15 Dalsa Corp. 154
9.16 Denka Seiken Co., Ltd. 154
9.17 DiaDexus, Inc. 154
9.18 Dilon Diagnostics 155
9.19 FujiFilm Medical Systems USA 155
9.20 General Electric Healthcare 156
9.21 Genzyme Corp. 157
9.22 Hologic Inc. 159
9.23 iCAD, Inc. 160
9.24 Imaging Diagnostic Systems, Inc. 160
9.25 Inverness Medical Innovations, Inc. (Alere) 161
9.26 Invivo Corp. 163
9.27 Johnson & Johnson, Inc. 165
9.28 Kyowa Medex Co., Ltd. 167
9.29 Lantheus Medical Imaging, Inc. 167
9.30 LifeScan Corporation 167
9.31 Matritech (Acquired by Inverness Medical Innovations) 168
9.32 Medix Biochemica 169
9.33 Mitsubishi Kagaku Iatron 170
9.34 Myrriad Genetics, Inc. 170
9.35 OraSure Technologies, Inc. 171
9.36 Polymedco, Inc. 173
9.37 Procrea Cliniques 174
9.38 QIAGEN in USA 174
9.39 Quest Diagnostics, Inc. 175
9.40 Quidel Corp. 175
9.41 Rad-Icon Imaging Corp 178
9.42 Roche Ltd. 178
9.43 Scanis Inc. 178
9.44 Sectra Imtec AB 179
9.45 Shanghai Kehua Bioengineering Co., Ltd. 179
9.46 Siemens Medical Solutions USA, Inc. 179
Table 4.22: Ovulation Predictors 52
Table 4.23: TPA Marker Sensitivity 56
Table 4.24: HPV Risk Factors 65
Table 4.25: Relationship between HPV and Cervical Carcinoma 66
Table 4.26: HPV and Cervical Carcinoma Risk 66
Table 4.27: Rationale for Reflex HPV Testing with Cytology 67
Table 4.28: Rationale against Reflex HPV Testing with Cytology 67
Table 4.29: Predictability of HPV Test by Abnormal Pap Smear Type 68
Table 4.30: Incidence of Cervical Cancer and Cytological Abnormality 68
Table 4.31: Long Term Trends in HPV Testing 69
Table 4.32: U.S. Women’s Health Testing Market for HIV, 2001-2012 71
Table 4.33: Countries with the Highest Prevalence of HIV / AIDS 72
Table 4.34: U.S. Strep Testing Market Size, 2002-2012 73
Table 4.35: U.S. Market for Rapid Point of Care Strep Tests 73
Table 4.36: The U.S. Chlamydia Testing Market, 2000-2012 76
Table 4.37: Summary of Hepatitis Test Technology 79
Table 5.1: U.S. Healthcare Expenditures, 2000-2010 83
Table 5.2: International Per Capita Healthcare Spending by Country, 2007 84
Table 5.3: U.S. Use of Mammography in Women Over 40, 1987-2008 86
Table 5.4: Annual Mammography Procedures in the U.S., 2000-2008 86
Table 5.5: Annual Mammography Procedures in Europe, 2002-2008 87
Table 5.6: Annual Mammography Procedures in Japan, 2002-2008 87
Table 5.7: Annual Mammography Procedures in the Rest of the World, 2002-2008 87
Table 5.8: U.S. Mammography Facts, 2008 88
Table 5.9: Breast Cancer Survival Rates by Country 89
Table 5.10: Surgical Biopsies Performed in the U.S., 2000-2009 89
Table 5.11: The Worldwide Mammography Instrument Market, 2000-2010 91
Table 5.12: Worldwide Mammography Instrumentation Placements, 2002-2010 92
Table 5.13: Worldwide Film-Based Mammography Instrumentation Placements, 2002-2010 99
Table 5.14: Worldwide Mammography Film-Based Instrument Market, 2000-2010 99
Table 5.15: Worldwide Mammography Film-Based Instrument Market by Region, 2000-2010 102
Table 5.16: U.S. Mammography Film-Based Instrument Market, 2000-2010 102
Table 5.17: U.S. Mammography Film-Based Instrument Market Manufacturer Share 103
Table 5.18: U.S. Film-Based Mammography Instrumentation Placements, 2002-2010 103
Table 5.19: European Mammography Film-Based Instrument Market, 2000-2010 104
Table 5.20: European Film-Based Mammography Instrumentation Placements, 2002-2010 104
Table 5.21: European Mammography Film-Based Instrument Market Manufacturer Share 105
Table 5.22: Japanese Mammography Film-Based Instrument Market, 2000-2010 105
Table 5.23: Japanese Film-Based Mammography Instrumentation Placements, 2002-2010 106
Table 5.24: Japanese Mammography Film-Based Instrument Market Manufacturer Share 106
Table 5.25: ROW Mammography Film-Based Instrument Market, 2000-2010 107
Table 5.26: ROW Film-Based Mammography Instrumentation Placements, 2002-2010 107
Table 5.27: Advantages of Digital Mammography 110
Table 5.28: Worldwide Digital General Radiography Market, 2000-2012 118
Table 5.29: Worldwide Market for Digital Mammography Systems Annual Unit Sales, 2000-2010 119
Table 5.30: Worldwide Market for Digital Mammography Systems, 2000-2010 119
Table 5.31: Worldwide Mammography Digital Instrumentation Placements, 2002-2010 119
Table 5.32: Worldwide Mammography Digital Instrument Market by Region, 2001-2010 120
Table 5.33: Share of Worldwide Market for Digital Mammography Systems by Competitor 120
Table 5.34: U.S. Mammography Digital Instrument Market, 2001-2010 120
Table 5.35: U.S. Digital Mammography Instrumentation Placements, 2002-2010 121
Table 5.36: European Mammography Digital Instrument Market, 2001-2010 121
Table 5.37: European Digital Mammography Instrumentation Placements, 2002-2010 123
Table 5.38: Japanese Mammography Digital Instrument Market, 2001-2010 123
Table 5.39: Japanese Digital Mammography Instrumentation Placements, 2002-2010 124
Table 9.1: Products Marketed By Abbott in the Diagnostic Market 147
1.0 Overview

1.1 Statement of Report

The purpose of this report is to describe the specific segment of the \textit{in vitro} diagnostics (IVDs) market called women’s health testing. This study includes contemporary and generally accepted clinical and analytical activities. This analysis examines clinical measurement devices, as well as their reagents and supplies, as utilized in hospitals, clinics and doctor’s offices. Some diagnostic tests, which are marketed primarily as over-the-counter products, are included in this review. This report also includes other important tests such as mammography, \textit{i.e.}, tests which are not generally associated with \textit{in vitro} diagnostic tests, but which are an important component of the overall women’s health market.

1.2 Scope of this Report

This examination deals with analysis related to the common chemical constituents of blood, plasma or serum which is of concern to patient testing in the field of women’s health. Hospitals and clinics are the two most important areas where such tests are measured, with physician’s office laboratories (POLs) being the third. Newer areas of interest where testing for these analytes is taking place are satellite laboratories and home testing locations.

The emphasis of this analysis is on those companies and products that are actively developing and marketing clinical laboratory instrumentation, reagents and supplies for performing diagnostic tests related to women’s health. The reader should consult other TriMark Publications reports for a detailed discussion of the important individual market segments which are related to the women’s health testing market such as clinical chemistry testing, hematology and coagulation, blood gas and electrolytes, immunochemistry, over-the-counter (OTC) testing, and point of care (POC) testing. All of these subjects receive thorough treatment in other reports by TriMark Publications and are available at http://www.trimarkpublications.com.

Concentration is placed on the women’s health testing market segment in important worldwide markets such as the U.S., Japan and Europe. This focus is primarily on the hospital market and commercial laboratory segment and, separately, on a description of the instruments, reagents and supplies marketed by major companies in this segment.

The study does not cover markets generally associated with immunochemistry instruments and reagents. Hematology, coagulation and chemistry markets are not addressed, although many of the instruments, reagents and techniques in the women’s health testing market segment are intimately associated with these broader areas.

Analysis touches upon the specialty areas in women’s health testing since these segments are frequently a part of the overall analytical focus of companies that are marketing general laboratory equipment. However, no effort is made to quantify the size of this broader market. The examination does mention companies who market and sell instruments and equipment as part of a much larger clinical laboratory product line produced by other companies. This is the case, for example, with Hitachi and its relationship with Roche Diagnostics Corporation, or JEOL and its manufacturing products for Bayer. However, these companies are only reported en passant since they are not a direct focus of the women’s health testing market. This study further focuses on mergers and acquisitions in the sector, new product launches, and any important legal issues that are recent and have some bearing on the growth of the women’s health testing sector.

There is a strong emphasis on the hospital and commercial laboratory segment of the women’s health testing market and description of women’s health testing devices in the physician’s office and clinic setting. Home testing is not directly covered in this report, except where women’s health testing products and companies are also active in the hospital and physician’s office segments.

Although there’s discussion on recombinant proteins in passing, as well as techniques such as measuring the serum concentrations of therapeutic drugs and drugs of abuse, no extensive or in depth treatment of this subject is presented here. Such a discussion is outside the scope of this analysis. The clinical women’s health testing reagents and equipment market in the U.S. and worldwide are examined thoroughly. This field can be divided into three broad areas: the hospital market, the doctor’s office market and, to a much lesser extent, the home care market.
Certain areas are only touched upon since they are related to the major elements of this report, but are for all practical purposes in an entirely different field or market. Examples of this are both the blood gas and electrolyte market and the clinical chemistry testing instruments. These are very interesting and substantive areas, which form much of the foundation for women’s health testing analysis; however, in the interest of brevity and efficient research, these areas were not analyzed in depth. Finally, the mammography industry is examined herein with details of the relative merits and market sizes of digital and film-based mammography.

1.3 Methodology

The author of this report is a Ph.D. in biochemistry from the University of Minnesota, with many decades of experience in science writing and as a medical industry analyst. He has been a senior director of several large regional and national healthcare laboratories. The senior editor is a Ph.D. in physiology from the University of Toronto and is a post doctoral research fellow in the Department of Cell and Systems Biology at the University of Toronto.

Company-specific information is obtained mainly from industry trade publications, academic journals, news and research articles, press releases and corporate websites, as well as annual reports for publicly-held firms. Additionally, sources of information include the non-governmental organizations (NGOs) such as the World Health Organization (WHO) and governmental entities like the U.S. Department of Health and Human Services (HHS) and U.S. federal agencies such as National Institutes of Health (NIH), Food and Drug Administration (FDA) and the Centers of Disease Control and Prevention (CDC). Where possible and practicable, the most recent data available have been used.

Some of the statistical information was taken from Biotechnology Associates’ databases and from TriMark’s private data stores. The information in this study was obtained from sources that we believe to be reliable, but we do not guarantee the accuracy, adequacy or completeness of any information or omission or for the results obtained by the use of such information. Key information from the business literature was used as a basis to conduct dialogue with and obtain expert opinion from market professionals regarding commercial potential and market sizes. Senior managers from major company players were interviewed for part of the information in this report.

Primary Sources

TriMark collects information from hundreds of Database Tables and many comprehensive multi-client research projects, as well as Sector Snapshots that it publishes annually. TriMark extracts relevant data and analytics from its research as part of this data collection.

Secondary Sources

TriMark uses research publications, journals, magazines, newspapers, newsletters, industry reports, investment research reports, trade and industry association reports, government-affiliated trade releases and other published information as part of its secondary research materials. The information is then analyzed and translated by the Industry Research Group into a TriMark study. The Editorial Group reviews the complete package with product and market forecasts, critical industry trends, threats and opportunities, competitive strategies and market share determinations.

TriMark Publications Report, Research and Data Acquisition Structure

The general sequence of research and analysis activity prior to the publication of every report in TriMark Publications includes the following items:

- Completing an extensive secondary research effort on an important market sector, including gathering all relevant information from corporate reporting, publicly-available data and proprietary databases.

- Formulating a study outline with the assigned writer, including important items, as follows:
 - Market and product segment grouping, and evaluating their relative significance.
• Key competitors’ evaluations, including their relative positions in the business and other relevant facts to prioritize diligence levels and assist in designing a primary research strategy.
• End-user research to evaluate analytical significance in market estimation.
• Supply chain research and analysis to identify any factors affecting the market.
• New technology platforms and cutting-edge applications.

• Identifying the key technology and market trends that drive or affect these markets.

• Assessing the regional significance for each product and market segment for proper emphasis of further regional/national primary and secondary research.

• Completing a confirmatory primary research assessment of the report’s findings with the assistance of expert panel partners from the industry being analyzed.

1.4 Executive Summary

There is a steady increase in demand for home healthcare services along with pressures to lower the cost of home care and improve the quality of healthcare delivered in the home. The women’s health diagnostic product segments are poised for a major new phase of growth fueled by the availability of new technology coming out of the point of care segment and the higher interest of individual patients and general healthcare consumers to take charge of their own health status. Continuous improvements in technology are resulting in a growing number of new in vitro diagnostic tests that combine high levels of accuracy with rapid, easy-to-use product formats. Digital mammography is also driving more screening programs.

Many women’s health in vitro diagnostic products and mammography services are specifically targeted at markets outside of the traditional hospital or clinical laboratory. Competition in the development and marketing of women’s health diagnostic products is intense and diagnostic technologies have been subject to rapid change. TriMark estimates that the competitive factors in the women’s diagnostic market include convenience, privacy, price and product performance, as well as the distribution, advertising, promotion and brand name recognition of the marketer. There are a few (perhaps ten) dominant global players in this market segment; these are matched by hundreds of small companies with one or more products aiming at niche markets. This is the case, for example, with Medix Biomedica and its tests for fetal development and early labor. In contrast, the mammography market is dominated by two or three very large players, such as General Electric.

The market for women’s diagnostic health tests in the U.S. was over $4.0 billion in 2008. Two test categories—pregnancy and mammography dominate this market and account for approximately 22% and 35% of the total women’s health in vitro market, respectively. Markets for women’s health products, like pregnancy testing, are dominated by large pharmacy chains retailing pregnancy testing kits over the counter directly to women. In the U.S., pharmacy chains represent less than 40% of the total number of facilities, but account for 70% of test volume and 80% of revenues.

In 2009, the U.S. Preventive Services Task Force (USPSTF) issued a dramatic change in the mammography guidelines for women between the ages of 40 and 49. In short, the USPSTF recommended that women begin having mammograms at age 50, instead of the previous 40-years-of-age starting point. This shift in government guidelines was met with swift negative reaction by several cancer and women’s organizations. More will be discussed on this controversy later in the report.

The National Cancer Institute (NCI) appreciates the USPSTF’s careful review and analysis of the evidence regarding breast cancer screening for women at average risk. The take-away message is that each woman needs to consider her individual benefits and risks and discuss them with her health care provider before making a decision on when to start screening mammography and how often to get one. The Task Force report concludes that screening mammography remains an important, effective tool for early detection of breast cancer. It also indicates, however, that the evidence of benefit might vary, according to age and individual risk factors.
NCI has had screening mammography recommendations for many years, and will need to evaluate them in light of the Task Force's recommendations -- for all women, not only for those of average risk. It's too early for NCI to make any decisions right now. NCI's primary role as a biomedical research agency is to generate scientific knowledge that can be used by the Task Force and other organizations in their deliberations and recommendations.

According to the NCI website there are many benefits to screening mammography. Several large studies conducted around the world show that breast cancer screening with mammograms reduces the number of deaths from breast cancer for women ages 40 to 69, especially for those over age 50. Studies conducted to date have not shown a benefit from regular screening mammograms, or from a baseline screening mammogram (a mammogram used for comparison), in women under age 40.

According to the U.S. Census Bureau, the number of women over age 40 is estimated to be ______. The U.S. leads in its annual volume of mammography screening procedures. Over ______ women age 40 or above annually undergo breast examinations, resulting in as many as ______ mammograms to be interpreted annually. Abnormality is evident in _____% of these mammograms, with most cases undergoing a second test and about _____% undergoing biopsies. The total digital mammography market in the U.S. is projected to exceed $_______ million in ______. Digital mammography is currently a young and small market, but will grow well despite higher costs because it provides opportunity for increased resolution and simpler image manipulation. It is projected that the digital mammography market in the U.S. will reach $_______ million in ______, growing at a compounded rate of ______% between ______ and ______

The total worldwide market for mammography, both film-based and digital, was $_______ million in ______, and is expected to reach $_______ million in ______. TriMark anticipates that the digital mammography segment will be nearly half of the total sales for the mammography sector. The estimate is that the digital segment had less than ______% of total worldwide placements of mammography instruments and is expected to have a growth rate of more than ______% by ______. Sales of film-based mammography systems grew at rates from ______% to ______% through ______, reaching $_______ million compared to $_______ million in ______. In ______, film-based systems were $_______ million.

In the U.S., the mammography market increased to $_______ million in ______, and is expected to reach $_______ million in ______. Sales for the European mammography film-based instrument market are estimated to have grown from $_______ million in ______ to an estimated $_______ million in ______. TriMark anticipates a solid growth rate based upon continued brisk sales of new, first time mammography units as well as replacements. A sale for the Japanese mammography digital instrument market was $_______ million in ______, and expected to increase to $_______ million in ______.
2.0 Introduction - Sector Overview

2.1 Global Diagnostic Products Industry

By any measure, whether it is new product approvals, therapeutic outcomes, clinical acceptance, pipeline quality or market performance, the over-the-counter diagnostic products industry has come into its own. Looking ahead, women’s health diagnostic product segments are poised for a major new phase of growth fueled by the availability of new technology. This technology has arisen out of the point of care segment and the higher interest of individual patients and general healthcare consumers to take charge of their own health status. In this report, TriMark takes stock of the current situation and future prospects of several high growth market segments in the industry. TriMark conducts this evaluation by detailing the salient developments and trends in the following areas:

- Financing alliances, mergers and acquisitions.
- Therapeutic markets intellectual property.
- Regulatory issues, economics and cost containment.
- Technologies for discovery.
- Development of public perception.

The emerging picture of the industry is sharpened by a rigorous analysis of sector-leading companies, detailing their unique strengths, R&D strategies, key patents and their relationship to pipeline elements, collaborations, commercial and developmental products, and direct competition for key products. As a representative group, these companies track the overall health and direction of the industry. The wealth of strategic and product-specific information contained in these profiles serves to validate our broader analysis of the industry.

Table 2.1: Worldwide Market Share In Vitro Diagnostic Companies

<table>
<thead>
<tr>
<th>Company</th>
<th>Worldwide Market Share (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roche</td>
<td>19%</td>
</tr>
<tr>
<td>Siemens</td>
<td>16%</td>
</tr>
<tr>
<td>Abbott</td>
<td>12%</td>
</tr>
<tr>
<td>J&J</td>
<td>10%</td>
</tr>
<tr>
<td>Beckman Coulter</td>
<td>6%</td>
</tr>
<tr>
<td>Becton Dickinson</td>
<td>4%</td>
</tr>
<tr>
<td>BioMérieux</td>
<td>3%</td>
</tr>
<tr>
<td>All Others</td>
<td>30%</td>
</tr>
</tbody>
</table>

Source: Roche

Table 2.2: Worldwide In Vitro Diagnostics Market Size, 2001-2012

<table>
<thead>
<tr>
<th>Year</th>
<th>Worldwide Sales ($ Billions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>19.0</td>
</tr>
<tr>
<td>2002</td>
<td>20.1</td>
</tr>
<tr>
<td>2003</td>
<td>24.4</td>
</tr>
<tr>
<td>2004</td>
<td>28.5</td>
</tr>
<tr>
<td>2005</td>
<td>32.2</td>
</tr>
<tr>
<td>2006</td>
<td>34.5</td>
</tr>
<tr>
<td>2007</td>
<td>36.9</td>
</tr>
<tr>
<td>2008</td>
<td>39.4</td>
</tr>
<tr>
<td>2009</td>
<td>42.2</td>
</tr>
<tr>
<td>2010</td>
<td>45.2</td>
</tr>
<tr>
<td>2011</td>
<td>48.3</td>
</tr>
<tr>
<td>2012</td>
<td>51.7</td>
</tr>
</tbody>
</table>

Source: Biotechnology Associates