THERAPEUTIC DRUG MONITORING MARKETS

(SAMPLE COPY, NOT FOR RESALE)

Trends, Industry Participants, Product Overviews and Market Drivers
TABLE OF CONTENTS

1. Overview 9
 1.1 Statement of Report 9
 1.2 About This Report 9
 1.3 Scope of the Report 10
 1.4 Objectives 10
 1.5 Methodology 11
 1.6 Executive Summary 12

2. Therapeutic Drug Monitoring 16
 2.1 Introduction 16
 2.2 Function of Therapeutic Drug Monitoring 18
 2.3 Drug Screening Boom 20
 2.3.1 Pain Management Drug Testing in Europe 22
 2.3.2 Neonate Patients and Patients of Old Age 22
 2.3.3 Therapeutic Drug Monitoring and Immunosuppressive Drugs 23
 2.3.4 Antiretroviral Usage and TDM Monitoring 23
 2.4 The Process of Therapeutic Drug Monitoring 25

3. Commonly Monitored Therapeutic Drugs 29
 3.1 Antiepileptics 30
 3.2 Antiarrhythmics 32
 3.3 Antimanic 35
 3.4 Antineoplastic Drugs (Anticancer Drugs) 37
 3.5 Bronchodilators 39
 3.6 Antibiotics 40
 3.7 Immunosuppressants 41
 3.7.1 Interference in Immunosuppressant Drug Immunoassays 42
 3.8 Antiretrovirals 43
 3.9 Antimycotic Agents 47
 3.9.1 Fluycytosine 47
 3.9.2 Triazoles 47
 3.9.3 Itraconazole 47
 3.9.4 Voriconazole 48
 3.9.5 Posaconazole 48

4. Therapeutic Drug Testing Market Analysis 49
 4.1 Therapeutic Drug Monitoring – Market Revenue Analysis 49
 4.2 Therapeutic Drug Monitoring – Market Share Analysis 52
 4.3 Therapeutic Drug Monitoring – Market Dynamics 54
 4.4 Quality Control and Accreditation 55
 4.5 Common Drugs Analyzed by Therapeutic Drug Monitoring in the Developing World 55
 4.6 Pitfalls of Therapeutic Drug Monitoring in the Developing World 55
 4.7 Diagnostic Testing in the Future 56

5. Company Specific Instrumentation and Test Kit Review 57
 5.1 Biosite Diagnostics (Inverness, Now Called Alere) 57
 5.2 Abbott Diagnostics 58
 5.3 Roche Diagnostics 59
 5.4 American Bio Medica Corp. 60
 5.5 Phamatech, Inc. 64
 5.6 First Check Medical 64
 5.7 OraSure 65
 5.8 Concateno 65
 5.9 Alfa Scientific Designs, Inc. 65
<table>
<thead>
<tr>
<th></th>
<th>Company Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.11</td>
<td>Beckman Coulter</td>
<td>68</td>
</tr>
<tr>
<td>5.12</td>
<td>Bio-Rad</td>
<td>70</td>
</tr>
<tr>
<td>5.13</td>
<td>Siemens Healthcare Diagnostics</td>
<td>70</td>
</tr>
<tr>
<td>5.14</td>
<td>Thermo Fisher Scientific</td>
<td>71</td>
</tr>
<tr>
<td>5.15</td>
<td>Agilent Technologies</td>
<td>71</td>
</tr>
<tr>
<td>5.16</td>
<td>Randox</td>
<td>72</td>
</tr>
<tr>
<td>5.17</td>
<td>Awareness Technology</td>
<td>74</td>
</tr>
<tr>
<td>5.18</td>
<td>Carolina Chemistries</td>
<td>74</td>
</tr>
<tr>
<td>5.19</td>
<td>Horiba Medical</td>
<td>75</td>
</tr>
<tr>
<td>5.20</td>
<td>Ortho Clinical Diagnostics (Johnson & Johnson)</td>
<td>75</td>
</tr>
<tr>
<td>5.21</td>
<td>Medica Corporation, Inc.</td>
<td>76</td>
</tr>
<tr>
<td>5.22</td>
<td>Tecan</td>
<td>76</td>
</tr>
<tr>
<td>6.</td>
<td>Instrumentation/Analyzer Evaluation</td>
<td>77</td>
</tr>
<tr>
<td>6.1</td>
<td>Abaxis</td>
<td>77</td>
</tr>
<tr>
<td>6.2</td>
<td>Abaxis Picolo Express</td>
<td>77</td>
</tr>
<tr>
<td>6.3</td>
<td>Abbott AxSYM</td>
<td>78</td>
</tr>
<tr>
<td>6.4</td>
<td>Abbott ARCHITECH c4000</td>
<td>78</td>
</tr>
<tr>
<td>6.5</td>
<td>Abbott ARCHITECH i2000 Series</td>
<td>79</td>
</tr>
<tr>
<td>6.6</td>
<td>Abbott iSTAT</td>
<td>80</td>
</tr>
<tr>
<td>6.7</td>
<td>Alfa Wassermann ACE Alera</td>
<td>81</td>
</tr>
<tr>
<td>6.8</td>
<td>AMS Liasys</td>
<td>83</td>
</tr>
<tr>
<td>6.9</td>
<td>AMS SAT 450</td>
<td>85</td>
</tr>
<tr>
<td>6.10</td>
<td>AMS VEGASYS</td>
<td>86</td>
</tr>
<tr>
<td>6.11</td>
<td>AMS NEPHYS</td>
<td>87</td>
</tr>
<tr>
<td>6.12</td>
<td>AMS ELLIPSE</td>
<td>89</td>
</tr>
<tr>
<td>6.13</td>
<td>Beckman Coulter AU Range</td>
<td>90</td>
</tr>
<tr>
<td>6.14</td>
<td>Beckman Coulter UniCel Dx</td>
<td>91</td>
</tr>
<tr>
<td>6.15</td>
<td>Beckman Coulter Access 2</td>
<td>91</td>
</tr>
<tr>
<td>6.16</td>
<td>BioMerieux VIDAS</td>
<td>92</td>
</tr>
<tr>
<td>6.17</td>
<td>BioMerieux MiniVIDAS</td>
<td>95</td>
</tr>
<tr>
<td>6.18</td>
<td>Carolina Chemistries BioLis 24i</td>
<td>95</td>
</tr>
<tr>
<td>6.19</td>
<td>DiaSorin ETI-MAX 3000</td>
<td>96</td>
</tr>
<tr>
<td>6.20</td>
<td>DiaSorin LIAISON</td>
<td>97</td>
</tr>
<tr>
<td>6.21</td>
<td>DiaSorin LIAISON XL</td>
<td>98</td>
</tr>
<tr>
<td>6.22</td>
<td>Griotols TRITUR U.S.</td>
<td>98</td>
</tr>
<tr>
<td>6.23</td>
<td>Horiba ABX Pentra 400</td>
<td>99</td>
</tr>
<tr>
<td>6.24</td>
<td>Alere/Inverness Medical DS2</td>
<td>99</td>
</tr>
<tr>
<td>6.25</td>
<td>Ortho Clinical Diagnostics VITROS 5600</td>
<td>99</td>
</tr>
<tr>
<td>6.26</td>
<td>Ortho Clinical Diagnostics VITROS 4600</td>
<td>100</td>
</tr>
<tr>
<td>6.27</td>
<td>Ortho Clinical Diagnostics VITROS 5, IFS</td>
<td>102</td>
</tr>
<tr>
<td>6.28</td>
<td>Ortho Clinical Diagnostics VITROS 350</td>
<td>104</td>
</tr>
<tr>
<td>6.29</td>
<td>Ortho Clinical Diagnostics VITROS ECiQ</td>
<td>104</td>
</tr>
<tr>
<td>6.30</td>
<td>Medica EasyRA</td>
<td>106</td>
</tr>
<tr>
<td>6.31</td>
<td>Nova Biomedical Critical Care Xpress</td>
<td>106</td>
</tr>
<tr>
<td>6.32</td>
<td>Polymedic Poly-Chem</td>
<td>106</td>
</tr>
<tr>
<td>6.33</td>
<td>Polymedic Spotchem EZ Analyzer</td>
<td>106</td>
</tr>
<tr>
<td>6.34</td>
<td>RandoxRX Imola</td>
<td>107</td>
</tr>
<tr>
<td>6.35</td>
<td>Randox RX Daytona Plus</td>
<td>109</td>
</tr>
<tr>
<td>6.36</td>
<td>Randox Daytona</td>
<td>110</td>
</tr>
<tr>
<td>6.37</td>
<td>Randox RX Monza</td>
<td>110</td>
</tr>
<tr>
<td>6.38</td>
<td>Randox RX Suzuki</td>
<td>112</td>
</tr>
<tr>
<td>6.39</td>
<td>Roche Cobas c701</td>
<td>113</td>
</tr>
<tr>
<td>6.40</td>
<td>Roche Cobas c502</td>
<td>113</td>
</tr>
<tr>
<td>6.41</td>
<td>Roche Total Lab Automation Platform</td>
<td>113</td>
</tr>
<tr>
<td>6.42</td>
<td>Roche Cobas 6000</td>
<td>113</td>
</tr>
</tbody>
</table>
6.43 Siemens Dimension Vista 3000T 114
6.44 Siemens Dimension Vista 1500 116
6.45 Siemens Dimension Vista 1000T 117
6.46 Siemens Dimension Vista 500 118
6.47 Siemens Dimension RxL Max 118
6.48 Siemens Dimension Expand Plus 120
6.49 Siemens Dimension EXL with LM integrated Chemistry System 121
6.50 Siemens Dimension EXL200 integrated Chemistry System 122
6.51 Siemens CLINITEK Novus Automated Urine Clinical Chemical Analyzer 123

7. In Vitro Diagnostic Technologies and Potential Applications 124
7.1 Performance Characteristics Required for Implementation of FDA-Approved/Cleared Tests 124
7.2 Immunoassays 124
7.2.1 Technology Principle 125
7.2.2 Enzyme Immunoassays 125
7.2.3 Enzyme-Linked Immunosorbant Assay 126
7.2.4 Enzyme Multiplied Immunoassay Technique 126
7.2.5 Cloned Enzyme Donor Immunoassay 127
7.2.6 Radio Immunoassay 127
7.2.7 Fluorescence Polarization Immunoassay 127
7.2.8 Lateral Flow Immunoassays 128
7.2.9 Particle Enhanced Turbidimetric Inhibition Immunoassay 128
7.2.10 Affinity Chrome Mediated Immunoassay 128
7.2.11 Future Trends of Immunoassays 128
7.3 Chemiluminescence 128
7.4 High Pressure Liquid Chromatography (HPLC) 128
7.5 Gas Chromatography/Mass Spectrometry 129
7.6 Liquid Chromatography/Mass Spectrometry 130

8. Chemical Analyzer Market Analysis 131
8.1 Ultra-Large Clinical Chemistry Analyzer Market Analysis 131
8.2 High Volume Clinical Chemistry Market 132
8.3 Mid-Size Clinical Chemistry Analyzers 133
8.4 Small-Volume Chemical Analyzer Market 134
8.5 Competitive Analysis 135

9. SWOT Analysis 139
9.1 Main Drivers of Therapeutic Drug Analysis Market 139
9.2 Potential Threats and Restraints of the Therapeutic Drug Testing Market 141
9.3 Challenges of this Market Place Going Forward 142
9.4 Opportunities of the Therapeutic Drug Analysis Test Market 144
9.5 Summary of Market Weaknesses, Opportunities and Threats 144

10. Company Profiles and TDM Market Position Analysis 146
10.1 Main Players in the Industry – Market Leaders 146
10.2 Roche Diagnostics Market Analysis 146
10.3 Abbott Laboratories Market Analysis 149
10.4 Siemens Healthcare Market Analysis 151
10.5 Thermo Fisher Market Analysis 152
10.6 Beckman Coulter Market Analysis 153
10.7 OraSure Technologies Market Analysis 156
10.8 Alere/Inverness Medical Innovations Market Analysis 158
10.9 Bayer AG Market Analysis 159
10.10 BioChem Pharmaceuticals Market Analysis 162
10.11 BioRad Market Analysis 162

© 2013 TriMark Publications, LLC. All rights reserved. www.trimarkpublications.com
INDEX OF TABLES

Table 2.1: Conditions Under Which Therapeutic Drug Monitoring is Performed 16
Table 2.2: Conditions Where Therapeutic Drug Monitoring is not Required 17
Table 2.3: Key Attributes of Therapeutic Drug Monitoring 17
Table 2.4: Process of Therapeutic Drug Monitoring 26
Table 2.5: Information required to correctly interpret TDM concentration 27
Table 3.1: Monitored Therapeutic Drugs by Category and Indications 29
Table 3.2: Commonly Monitored Drugs 30
Table 3.3: Common Antiepileptic Drugs that undergo Therapeutic Drug Monitoring 30
Table 3.4: Proposed Therapeutic Range for newer Antiepileptics 31
Table 3.5: Antiepileptic Drug Monitoring Indications 31
Table 3.6: Application of Therapeutic Ranges for Antiepileptic Therapies 31
Table 3.7: Classification and examples of Antiarrhythmic Agents 33
Table 3.8: Antiarrhythmic Drugs, Indication and Therapeutic Range 33
Table 3.9: Commonly Prescribed Antiarrhythmic Drugs 33
Table 3.10: Application of Therapeutic Ranges for Antiepileptic Therapies 31
Table 3.11: Classification and examples of Antiarrhythmic Agents 33
Table 3.12: Drug Interactions Observed for Cardiac Drugs 34
Table 3.13: Short Term Side Effects of Lithium 36
Table 3.14: Long Term Side Effects of Lithium 36
Table 3.15: Classification of Antineoplastic agents 37
Table 3.16: General Toxicities of Antineoplastic Drugs 38
Table 3.17: Toxic effects of Methotrexate 38
Table 3.18: Therapeutic Range of Common Bronchodilators 39
Table 3.19: Toxic effects of Theophylline 39
Table 3.20: Toxic effects of Caffeine 39
Table 3.21: Common Antibiotics and their Therapeutic Ranges used in Therapeutic Drug Monitoring 40
Table 3.22: Types of Immunosuppressant Therapeutics 41
Table 3.23: Non-steady State Kinetics of Immunosuppressant’s in Therapeutic Drug Monitoring 42
Table 3.24: Common Immunosuppressant Agents in Therapeutic Drug Monitoring 42
Table 3.25: European and U.S. Guidelines for Therapeutic Drug Monitoring of Antiretroviral Drugs 44
Table 3.26: Antiretroviral Therapy in Children in Low- and Middle-Income Countries 45
Table 3.27: Antiretroviral Therapy Coverage in Low- and Middle-Income Countries 45
Table 3.28: Suggested Minimum Trough Plasma Concentrations for Individuals with Wild-Type HIV 46
Table 3.29: Guidelines for Therapeutic Management of Antiretroviral Drugs 47
Table 3.30: Justification for Therapeutic Drug Monitoring of Antifungals 48
Table 3.31: Recommendation for Therapeutic Drug Monitoring of Antifungals 48
Table 4.1: Global Market Revenue Forecast for Therapeutic Drug Testing, 2009-2019 49
Table 4.2: U.S. Market Revenue Forecast for Therapeutic Drug Testing, 2009-2019 50
Table 4.3: Europe Market Revenue Forecast for Therapeutic Drug Testing, 2009-2019 51
Table 4.4: Japan Market Revenue Forecast for Therapeutic Drug Testing, 2009-2019 51
Table 4.5: Asia Excluding Japan Market Revenue Forecast – Therapeutic Drug Testing, 2009-2019 51
Table 4.6: Central and Latin America Market Revenue Forecast – Therapeutic Drug Testing, 2009-2019 52
Table 4.7: Middle East/Africa Market Revenue Forecast – Therapeutic Drug Testing, 2009-2019 52
Table 4.8: Global Market Share Analysis for Therapeutic Drug Testing, 2012 53
Table 4.9: U.S. Market Share Analysis for Therapeutic Drug Testing, 2012 54
Table 4.10: Therapeutic Drug Monitoring Market Growth Drivers 55
Table 4.11: Therapeutic Drug Monitoring Market Entry Barriers and Risks 55
Table 4.12: Pitfalls of Therapeutic Drug Monitoring in Developing Countries 56
Table 5.1: Therapeutic Drug Monitoring Panel Available for Abbott Diagnostic ARCHITECT Range of Analyzers 58
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 5.2</td>
<td>OraSure Portfolio of Drug Detection Methodologies</td>
</tr>
<tr>
<td>Table 5.3</td>
<td>Alpha Scientific Designs Drug of Abuse Testing Cut-Off Level</td>
</tr>
<tr>
<td>Table 5.4</td>
<td>Regulatory Clearance of Alpha Scientific Products for Drug Testing</td>
</tr>
<tr>
<td>Table 5.5</td>
<td>Available 510K Cleared Analytes for the Vision™ Integrated Drug Test Cup</td>
</tr>
<tr>
<td>Table 6.1</td>
<td>Specifications of Abaxis Picolo Express</td>
</tr>
<tr>
<td>Table 6.2</td>
<td>Panel of Metabolites Detected by the Abaxis Picolo Express</td>
</tr>
<tr>
<td>Table 6.3</td>
<td>Panel of Assays Available for Abbott AxSYM System</td>
</tr>
<tr>
<td>Table 6.4</td>
<td>Panel of Assays Available for the Abbott ARCHITECH c4000</td>
</tr>
<tr>
<td>Table 6.5</td>
<td>Panel of Assays Available for the Abbott ARCHITECH i2000SR</td>
</tr>
<tr>
<td>Table 6.6</td>
<td>Specifications of Alfa Wassermann ACE Alera</td>
</tr>
<tr>
<td>Table 6.7</td>
<td>Test Panel for Alfa Wassermann ACE Alera</td>
</tr>
<tr>
<td>Table 6.8</td>
<td>Analyzer Medical Systems Clinical Analyzer Range and Throughput Capacity</td>
</tr>
<tr>
<td>Table 6.9</td>
<td>Specifications and Features of AMS Lysis</td>
</tr>
<tr>
<td>Table 6.10</td>
<td>Specifications and Features of AMS SAT 450</td>
</tr>
<tr>
<td>Table 6.11</td>
<td>Specifications and Features of AMS VEGASYS</td>
</tr>
<tr>
<td>Table 6.12</td>
<td>Specifications and Features of AMS NEPHYS</td>
</tr>
<tr>
<td>Table 6.13</td>
<td>Specifications and Tables of AMS ELLIPESE</td>
</tr>
<tr>
<td>Table 6.14</td>
<td>Beckman Coulter’s AU Range of Chemical Analyzers and Throughput Capacity</td>
</tr>
<tr>
<td>Table 6.15</td>
<td>Beckman Coulter’s UniCel Dx Range of Chemical Analyzers and Throughput Capacity</td>
</tr>
<tr>
<td>Table 6.16</td>
<td>Features of Beckman Coulter Access 2 Immunoassay System</td>
</tr>
<tr>
<td>Table 6.17</td>
<td>Beckman Coulter Test Panel for Chemical Analyzers</td>
</tr>
<tr>
<td>Table 6.18</td>
<td>Features of the BioMerieux VIDAS System</td>
</tr>
<tr>
<td>Table 6.19</td>
<td>Test Panel Available for BioMerieux VIDAS System</td>
</tr>
<tr>
<td>Table 6.20</td>
<td>Specifications of BioMerieux MiniVIDAS Analyzer</td>
</tr>
<tr>
<td>Table 6.21</td>
<td>Test Panel for Carolina Chemistries BioLis 24i</td>
</tr>
<tr>
<td>Table 6.22</td>
<td>Features of DiaSorin ETI-MAX 3000 Analyzer</td>
</tr>
<tr>
<td>Table 6.23</td>
<td>Features of DiaSorin LIAISON Analyzer</td>
</tr>
<tr>
<td>Table 6.24</td>
<td>Sample Management of DiaSorin LIAISON Analyzer</td>
</tr>
<tr>
<td>Table 6.25</td>
<td>Specifications of Gilfols TRITURU.S. Immunoanalyzer</td>
</tr>
<tr>
<td>Table 6.26</td>
<td>Reagents Available for the Horiba Medical ABX PENTRA 400</td>
</tr>
<tr>
<td>Table 6.27</td>
<td>Reagents Available for the Horiba Medical PENTRA 200</td>
</tr>
<tr>
<td>Table 6.28</td>
<td>Features of Ortho Clinical Diagnostics VITROS 5600 Analyzer</td>
</tr>
<tr>
<td>Table 6.29</td>
<td>Specifications and Features of Ortho Clinical Diagnostics VITROS 4600 Analyzer</td>
</tr>
<tr>
<td>Table 6.30</td>
<td>Specifications of Ortho Clinical Diagnostics VITROS 5, IFS</td>
</tr>
<tr>
<td>Table 6.31</td>
<td>Specifications of Ortho Clinical Diagnostics VITROS 350 Analyzer</td>
</tr>
<tr>
<td>Table 6.32</td>
<td>Specifications of Ortho Clinical Diagnostics VITROS ECiQ Analyzer</td>
</tr>
<tr>
<td>Table 6.33</td>
<td>Specifications of Polymedico Poly-Chem Analyzer</td>
</tr>
<tr>
<td>Table 6.34</td>
<td>Features of Polymedico Spotchem EZ Analyzer</td>
</tr>
<tr>
<td>Table 6.35</td>
<td>Test Kits Available for Polymedico Analyzers</td>
</tr>
<tr>
<td>Table 6.36</td>
<td>Features of Randox Laboratories RX Imola</td>
</tr>
<tr>
<td>Table 6.37</td>
<td>Test Menu for Randox Laboratories RX Imola Analyzer</td>
</tr>
<tr>
<td>Table 6.38</td>
<td>Features of Randox Laboratories RX Daytona Plus Analyzer</td>
</tr>
<tr>
<td>Table 6.39</td>
<td>Therapeutic Drug Monitoring Panel of Randox Laboratories RX Daytona plus</td>
</tr>
<tr>
<td>Table 6.40</td>
<td>Features of Randox Laboratories Daytona Analyzer</td>
</tr>
<tr>
<td>Table 6.41</td>
<td>Test Menu for Randox Laboratories Daytona Analyzer</td>
</tr>
<tr>
<td>Table 6.42</td>
<td>Features of Randox Laboratories RX Monza Analyzer</td>
</tr>
<tr>
<td>Table 6.43</td>
<td>Test Panel of Randox Laboratories RX Monza Analyzer</td>
</tr>
<tr>
<td>Table 6.44</td>
<td>Features of Randox Laboratories RX Suzuka</td>
</tr>
<tr>
<td>Table 6.45</td>
<td>Therapeutic Drug Monitoring Test Panel of Randox Laboratories RX Suzuka Analyzer</td>
</tr>
<tr>
<td>Table 6.46</td>
<td>Features of Siemens Dimension Vista 3000T Analyzer</td>
</tr>
<tr>
<td>Table 6.47</td>
<td>Assays available for Siemens Dimension Analyzers</td>
</tr>
<tr>
<td>Table 6.48</td>
<td>Features of Siemens Dimension Vista 1500 Analyzer</td>
</tr>
<tr>
<td>Table 6.49</td>
<td>Features of Siemens Dimension Vista 1000T</td>
</tr>
<tr>
<td>Table 6.50</td>
<td>Features of Siemens Dimension Vista 500</td>
</tr>
<tr>
<td>Table 6.51</td>
<td>Features of Siemens Dimension RxL Max Analyzer</td>
</tr>
<tr>
<td>Table 6.52</td>
<td>Test Panel for Siemens Dimension RxL Max Analyzer</td>
</tr>
</tbody>
</table>
Table 6.53: Features of Siemens Dimension Expand Plus 120
Table 6.54: Features of Siemens Dimension EXL with LM Integrated Chemistry System 121
Table 6.55: Features of Siemens Dimension EXL 200 Integrated Chemistry System 122
Table 6.56: Features of Siemens CLINITEK Novus Automated Urine Clinical Chemical Analyzer 123
Table 7.1: Performance Characteristics Required Before Implementation of FDA-Approved/Cleared Tests 124
Table 7.2: Comparison of Monoclonal and Polyclonal Antibody Characteristics 125
Table 7.3: Advantages and Disadvantages of Gas Chromatography/Mass Spectrometry 130
Table 9.1: Potential Challenges of Therapeutic Drug Testing Market 142
Table 9.2: Timeline of Legislative Changes from the Health Care and Education Reconciliation Act, 2010 to 2013 143
Table 10.1: Market Leaders in the Therapeutic Drug Monitoring Testing Industry 146
Table 10.2: Beckman Coulter Chemistry Systems Available for Ultra High, High, Moderate and Small Volume Laboratories 155
Table 10.3: Forensic Toxicology Therapeutic Portfolio of OraSure 156
Table 10.4: OraSure Portfolio of Drug Detection Methodologies 156
Table 10.5: Top-Selling Pharmaceutical Products by Bayer Healthcare Pharmaceuticals 161
Table 10.6: Selected Bayer Products undergoing Registration 161
Table 10.7: Bayer - Top Selling Pharmaceutical Products by Sales, 2010-2011 162
Table 10.8: Life Science Product Portfolio – BioRad 163
Table 10.9: Customer Profile of BioRad 163
Table 10.10: Panel of BioRads Life Science Industry Competitors 163
Table 10.11: Panel of BioRads Clinical Diagnostic Industry Competitors 164
Table App 1.1: Variables that Contribute to Therapeutic Drug Monitoring Analysis 166
Table App 1.2: Common Drug Administration Routes 168
Table App 1.3: CYP Enzyme Metabolism of Clinically Relevant Therapeutic Agents 170
Table App 1.4: Major Sources of Pharmacokinetic Variability 170
Table App 1.5: Common Drug Groups involved in Therapeutic Drug Monitoring 172
Table App 1.6: Interpretative Criteria for a number of common drugs during Therapeutic Drug Monitoring 173

INDEX OF FIGURES

Figure 2.1: Pharmacokinetics and TDM Relationship 18
Figure 2.2: Process for Reaching Dosage Decisions with Therapeutic Drug Monitoring 19
Figure 2.3: Individualized Drug Treatment using Therapeutic Drug Monitoring 19
Figure 2.4: Pharmacokinetics and Pharmacodynamics Contribute to Variability in the Relationship Between Therapeutic Dose and Effect 20
Figure 2.5: Concept of Therapeutic Range 20
Figure 2.6: Antiretroviral Coverage in Low and Middle Income Countries 24
Figure 2.7: Scenarios for Incremental Expansion of Antiretroviral Provision to Treat and Prevent HIV 25
Figure 3.1: Number of Depression Sufferers in the U.S. 2005-2010 36
Figure 3.2: The Requirement for Immunosuppressant Drug Monitoring 42
Figure 3.3: Global Summary of the AIDS Epidemic 44
Figure 3.4: Number of People receiving Antiretroviral Therapy 44
Figure 4.1: Global Revenue of Therapeutic Drug Testing Market Forecast, 2009-2017 49
Figure 4.2 Geographic Market Share of the Therapeutic Drug Test Market 50
Figure 4.3: Global Market Share Analysis for Therapeutic Drug Testing (2012) 53
Figure 4.4: U.S. Market Share Analysis – Therapeutic Drug Testing (2012) 54
Figure 6.1: Panel of Assays Available for the Abbott iSTAT 81
Figure 7.1: Principle of ELISA 126
Figure 7.2: Enzyme Multiplied Immunoassay Technique (EMIT) 127
Figure 7.3: Flow Diagram of High Pressure Liquid Chromatography 129
Figure 8.1: Market Share Ultra-Large Clinical Chemistry Analyzers U.S. 131
Figure 8.2: Market Share Ultra-Large Clinical Chemistry Analyzers Non-U.S. 131
Figure 8.3: Global Sales of Chemical Analyzers from Roche Diagnostics, 2010 136
Figure 9.1: Summary of Strengths, Weaknesses, Opportunities and Threats of Therapeutic Drug Test Market 145
Figure 10.1: Roche Diagnostics Sales Volume, 2008-2012 146
Figure 10.2: Roche Diagnostics Core Operating Profit, 2010-2012 147
Figure 10.3: Roche Diagnostics Sales by Global Region, 2012 148
Figure 10.4: Abbott’s Two New Companies in 2012 – Diversified Medical Products and Research-Based Pharmaceuticals 149
Figure 10.5: Abbott Diversified Medical Product Portfolio 150
Figure 10.6: Abbott Laboratories Global Annual Sales, 2008-2012 150
Figure 10.7: Abbott Laboratories Net Earnings, 2010-2012 150
Figure 10.8: Abbott Laboratories Net Sales – Diagnostics Division, 2010-2012 151
Figure 10.9: Siemens Market Share by Geographic Region, 2012 152
Figure 10.10: Thermo Fisher Revenue Generated by Geographic Region, 2011 152
Figure 10.11: Beckman Coulter Revenue by Geographic Region, 2010 154
Figure 10.12: Beckman Coulter Revenue by Segment, 2010 155
Figure 10.13: Revenue Generated by OraSure’s Oral Fluid Collection Devices, 2010-2011 157
Figure 10.14: Bayer Company Structure – Health Care, Crop Science and Material Science 160
Figure 10.15: Bayer Global Sales by Geographic Market, 2011 162
Figure 10.16: BioRad Global Net Sales, 2007-2011 164
Figure 10.17: BioRad Geographical Breakdown of Sales, 2011 164
Figure 10.18: Research and Development Expenditure, BioRad 2007-2011 165
Figure App 1.1: Volume of Distribution of Various Therapeutic Drugs 167
Figure App 1.2: Major Pharmacokinetic Processes Affecting Drug Concentration 168
Figure App 1.3: Role of Cytochrome P450 Enzymes in Hepatic Metabolism – Relative Hepatic Content of CYP Enzyme 169
Figure App 1.4: Role of Cytochrome P450 Enzymes in Hepatic Metabolism – Percentage Drugs Metabolized by CYP Enzymes 169
Figure App 1.5: Variability of Pharmacokinetics 171
Figure App 1.6: Steady State Kinetics of Therapeutic Drug Monitoring 172
1. Overview

1.1 Statement of Report

This report describes a specific segment of the *in vitro* diagnostics (IVD) market known as the therapeutic drug monitoring (TDM) test market. In the current medical diagnostics market, therapeutic drug testing offers promise for higher than average growth and intense technical innovation. This review analyses the size and growth of the TDM market, including factors that influence the various market segments within it and the dollar volume of sales, both in the U.S. and worldwide.

Also examined are:
- Drug analysis technology platforms
- Clinical applications of therapeutic drug testing
- The market for quantitative diagnostic drug tests
- Companies participating in this sector
- New instrumentation
- Trends in the industry
- The internal structure of the therapeutic drug testing sector

1.2 About This Report

This report includes the following features:

- It examines all of the generally-accepted clinical analytical activities in use today in the therapeutic drug testing sector. It includes the prevalent clinical measurement devices and the accompanying reagents and supplies as utilized in hospitals and large reference laboratories.
- It discusses the potential benefits of the therapeutic drug testing market for various sectors of the medical and scientific communities, and it assesses the market drivers and bottlenecks from the perspective of these communities.
- It establishes the current total market size and future growth of the therapeutic drug testing market and analyzes the current size and growth of various segments.
- It assesses various business models in therapeutic drug testing and provides strategic recommendations for near-term business opportunities.
- It examines the products offered and roles played by companies that have invested significantly in this market, and it provides current and forecasted market shares by these companies.

The main objectives of this analysis are:

- Identifying viable technology drivers through a comprehensive look at platform technologies for therapeutic drug testing, including enzyme immunoassays such as CEDIA and EMIT, high pressure liquid chromatography, gas chromatography and automated laboratory chemistry instruments.
- Obtaining a complete understanding of the chief therapeutic testing assays—i.e., screening, prognostic, monitoring, pharmacogenomic—from their basic principles to their applications.
- Discovering feasible market opportunities by identifying high-growth applications in different clinical diagnostic areas and by focusing on expanding markets.
- Focusing on global industry development through an in-depth analysis of the major world markets for therapeutic drug testing, including growth forecasts.
- Understanding the business issues that go into justifying high end analysis.
1.3 Scope of the Report

The goal of this study is to review the market for therapeutic drug testing equipment and supplies using reagents and instruments for analysis of individual components in body tissues and fluids (particularly blood). This is in contradistinction to analysis of drugs of abuse, the market for which are examined in a separate TriMark report. Toward this goal, this review answers the following key questions:

- Which companies are utilizing cutting-edge technologies to develop, validate and market therapeutic drug testing assays for clinical use?
- Which new therapeutic drug tests show the most promise for approval?
- What are the economic challenges to gaining approval?
- How can regulatory oversight drive approval and adoption of new technologies?
- Which alliances show the greatest synergy in bringing therapeutic drug testing to market?
- Which shared technologies are driving the most encouraging development?

This examination surveys most of the instrument companies known to be currently marketing, manufacturing or developing instruments and reagents for the therapeutic drug testing market, in both the U.S. and the world. Each leading company is discussed in depth, with sections on its history, product line, business and marketing analysis, and a subjective commentary of the company’s market position.

This analysis emphasizes the companies that are actively developing and marketing immunoassay clinical laboratory instrumentation, reagents and supplies for performing therapeutic drug testing tests. The emphasis in this report is on the clinical use of therapeutic drug testing tests.

The reader should consult other TriMark Publications reports at http://www.trimarkpublications.com for detailed discussions of important individual market segments related to the therapeutic drug testing market, such as clinical chemistry testing, high-growth diagnostic tests markets, and drugs of abuse testing. TriMark provides a separate market report called Mass Spectroscopy in the Clinical Laboratory Market, which emphasizes the analytical methods and technology platforms sometimes used in drugs of abuse testing. TriMark’s Drugs of Abuse Testing report discusses illegal or abusive patient drug testing.

1.4 Objectives

The emphasis in this report is on the clinical use of therapeutic drug testing tests and their development into the instrument mixture of clinical laboratory space.

The principal objective of this study is to review the market for therapeutic drug testing equipment and supplies using reagents and instruments for analysis of individual components in human biological samples. The report also defines the dollar volume of sales, both worldwide and in the U.S., and analyzes the factors that influence the size and the growth of the market segments. The subsections of the therapeutic drug testing market segment are examined in detail, including: major therapeutic drugs requiring monitoring, clinical testing markets, trends, analysis, SWOT, challenges and business decisions.

In this report, we:
- Assess the therapeutic drug testing market drivers and bottlenecks from the perspective of the medical and scientific communities.
- Discuss the potential benefits of the therapeutic drug testing market for various sectors of the medical and scientific community.
- Establish the current total market size and future growth of the therapeutic drug testing market and analyze the current size and growth of various segments.
- Provide current and forecasted market shares by the company.
- Provide strategic recommendations for near-term business opportunities.
- Assess current commercial uses of the therapeutic drug testing market.

On a more technical level, this report:
• Discuss the problems of using indirect methods such as immunoassays for analyzing complex biological fluids when making diagnostic decisions and their replacement with technology platforms.
• Review the strategies available for sample preparation
• Differentiate the strategies of toxicology analysis to best fit the clinical requirements
• Evaluate the applications of new technologies to the clinical laboratory assessment of therapeutic drugs

This review answers the following key questions:

• Which companies are utilizing cutting-edge technologies to develop, validate and implement drug tests for clinical use?
• What impediments still exist to incorporating promising drug testing tests into clinical practice?
• What are the economic challenges to approval?
• How can regulatory oversight drive approval and adoption of new technologies?
• Which alliances show the greatest synergy in bringing therapeutic drug testing tests to market?
• Which shared technologies are driving the most encouraging development?
• How can businesses entering the clinical lab testing space by leveraging therapeutic drug testing.

1.5 Methodology

The author of this report holds a Ph.D. in medicine/immunology from the Royal College Surgeons of Ireland and has completed post-doctoral studies and lecturing in Trinity College Dublin and University College Cork. The author has many decades of experience in scientific writing and as a medical industry analyst. She has over ten years of experience as a director in laboratory testing and instrument and reagent development technology, as well as extensive experience in senior level positions in biotech and medical service companies. The editor of this report is a Ph.D. in biochemistry from the University of Liverpool and an MBA from Oxford Brookes University with many decades of experience in science writing and as a medical industry analyst. The senior editor holds a Ph.D in biochemistry from the University of Minnesota. He is Board Certified in Laboratory Medicine and is a Fellow of the Society of Clinical Biochemistry. He was a director and has held other senior positions in clinical laboratories as well as in the diagnostic industry.

Company-specific information is obtained mainly from industry trade publications, academic journals, news and research articles, press releases and corporate websites, as well as annual reports for publicly-held firms. Additional sources of information include non-governmental organizations (NGOs) such as the World Health Organization (WHO) and governmental entities such as the Department of Health and Human Services (HHS), the National Institutes of Health (NIH), the Food and Drug Administration (FDA) and the Centers for Disease Control and Prevention (CDC). Where possible and practicable, the most recent data available have been used.

Some of the statistical information was taken from Biotechnology Associates’ databases and from TriMark’s private data stores. The information in this study was obtained from sources that we believe to be reliable, but we do not guarantee the accuracy, adequacy or completeness of any information or omission or for the results obtained by the use of such information. Key information from the business literature was used as a basis to conduct dialogue with and obtain expert opinion from market professionals regarding commercial potential and market sizes.

The authors have contacted numerous pharmcos including Roche, Siemens, ThermoFisher, Beckman Coulter, Alere, Bayer, Adnagen, AMDL, BioMerieux and Randox for their professional opinion on the market value. In addition, the editor has contacted Abbott for their estimates of the global TDM market. The authors have also communicated with business and academic contacts and various international associations such as the EDMA, IFCC, BIVDA, IVD Australia and the IATDMCT and also pharmacoeconomic academic specialists for information.

Primary Sources

TriMark collects information from hundreds of Database Tables and many comprehensive multi-client research projects, as well as Sector Snapshots that it publishes annually. TriMark extracts relevant data and analytics from its research as part of this data collection.
Secondary Sources

TriMark uses research publications, journals, magazines, newspapers, newsletters, industry reports, investment research reports, trade and industry association reports, government-affiliated trade releases and other published information as part of its secondary research materials. The information is then analyzed and translated by the Industry Research Group into a TriMark study. The Editorial Group reviews the complete package with product and market forecasts, critical industry trends, threats and opportunities, competitive strategies and market share determinations.

TriMark Publications Report, Research and Data Acquisition Structure

The general sequence of research and analysis activity prior to the publication of every report in TriMark Publications includes the following items:

- Completing an extensive secondary research effort on an important market sector, including gathering all relevant information from corporate reporting, publicly-available data and proprietary databases.

- Formulating a study outline with the assigned writer, including important items, as follows:
 - Market and product segment grouping, and evaluating their relative significance.
 - Key competitors’ evaluations, including their relative positions in the business and other relevant facts to prioritize diligence levels and assist in designing a primary research strategy.
 - End-user research to evaluate analytical significance in market estimation.
 - Supply chain research and analysis to identify any factors affecting the market.
 - New technology platforms and cutting-edge applications.

- Identifying the key technology and market trends that drive or affect these markets.

- Assessing the regional significance for each product and market segment for proper emphasis of further regional/national primary and secondary research.

- Completing a confirmatory primary research assessment of the report’s findings with the assistance of expert panel partners from the industry being analyzed.

1.6 Executive Summary

TDM is an important clinical assessment of drug plasma concentrations that also yields information regarding the efficacy, toxicity levels and potential drug-drug interactions of agents with a narrow therapeutic index. TDM is increasingly important in the healthcare sector as it becomes part of a lifetime regime for patients with chronic conditions such as HIV infection. Ultimately, TDM testing provides clinical information to optimize dosage regimes and prevent adverse reactions and lack of treatment compliance.

Primary research from leading suppliers shows that the global TDM market is estimated to be worth in excess of $ in and that the global market is growing at between annually. Based on the available evidence, the global TDM market is predicted to be valued at approximately by (CAGR %). Growth rates during the earlier stages of this markets development were higher, while the value of the market was relatively low. As the market value started to increase between and , the annual growth rate declined slightly, but is expected to increase again as the market expands and the advantages of therapeutic drug monitoring is appreciated in the matured markets and as the techniques and products appear in the emerging markets.

percent of the global TDM market has been attributed to the TDM market in the U.S. with the European market accounting for approximately % of the global market and Japan representing % and remaining % scattered around the other countries with more developed healthcare systems.
The U.S. is by far the largest single market and represented revenues sales of approximately $[blank] in [blank]. It is predicted that the market is growing rapidly and that, by the end of the forecast period, the market will have increased in value to $[blank] (CAGR [blank]%). The European market is estimated to be worth $[blank] in [blank] and is estimated to increase in value to $[blank] (CAGR [blank]%). Japan and other Asian markets are expected to grow rapidly with a CAGR of [blank]% and [blank]% respectively over the forecast period. Similarly the emerging markets of Central and Latin America are also expected to exhibit high growth rates in excess of [blank]% over the forecast period. The Middle East and African TDM markets are small, but expected to reach $[blank] by [blank], with a CAGR (2012-2019) of [blank]%.

The TDM testing market is driven by a number of sub-markets within the IVD industry including:

- Proteomic detection analysis in the HPLC and mass spectrometry markets.
- Immunoassay market.
- Sales of narrow therapeutic range drugs.
- Pharmacogenomic/pharmacogenetic analysis technology.
- Chemical analyzers for ultra-large scale, high scale, mid-volume scale and small scale markets.

TDM market growth is specifically driven by:

- The rise of drug profiling.
- New developments in diagnosis and treatment and the more extensive use of pharmacokinetics.
- Increased use of therapeutic drugs for control of pain.
- The need for screening therapeutic drugs that have a narrow therapeutic index.
- Improved detection levels.
- The use mass spec instrumentation for drug-screening confirmation.
- The development of a wide variety of mass spectrometry and separation based technology platforms.
- The use of computer assisted data analysis and multiplexing.
- Higher than average reimbursement levels.

Growth factors for the overall TDM markets include:

- Increases in consumer driven health care.
- An aging population with better health care services.
- Demand for esoteric testing.
- Demand for genetic testing.
- Increased government and private sector participation in therapeutic markets.

Within the IVD market, there are two main areas that are closely associated with TDM:

- Chemistry/chemical analyzers.
- Immunodiagnostic assays.

The chemistry and clinical automation sector is worth $[blank] globally with a CAGR of [blank]%. The immunodiagnostic/immunoassay and molecular diagnostic market is worth $[blank] per year globally with a CAGR of [blank]%.

The main weaknesses of the current therapeutic drug testing market include:

- Ongoing problems with reimbursement.
- Retrenchment within the hospital field.
- A weak global economy.
• Fluctuating exchange rates weakens the global market further.

Competition within the TDM market will also intensify with respect to chemical and immunodiagnostic analyzers. As technology within these systems increases, the market will flood with high-specification facilities which could drive sales prices down. Global economic retraction has restricted the number of new-hires to the workplace. This in turn has reduced the number of pre-employment drug tests, specifically for addiction to prescription drugs. Expiration of patents and intellectual property claims also threaten this market place.

The therapeutic drug testing market is dominated by a number of large pharma companies. The main competitors are:

• Roche Diagnostics.
• Abbott Laboratories.
• Alere.
• Siemens.
• Orasure.
• Thermo Fisher.
• Beckman Coulter.
• Bayer.

The global TDM market is dominated by eight major suppliers: Roche Diagnostics, Abbott Laboratories, Alere/Inverness Medical Innovations, Siemens Healthcare, Orasure, Thermo Fisher, Beckman Coulter and Bayer AG. The market leader is Roche Diagnostics accounting for [percentage] of the market or the equivalent of [revenue] in revenues. Abbott Laboratories is recognized as the second largest supplier of TDM products with an estimated [percentage] of the global market or the equivalent of sales valued at [revenue]. The third largest supplier of TDM products with an estimated [percentage] of the global market or the equivalent of sales valued at [revenue] is Alere/Inverness Medical Innovations.

These top eight suppliers account for an estimated [percentage] of the global market in [revenue] with the market leader Roche Diagnostics accounting for [percentage] of the market or the equivalent of [revenue] in revenues.

The most commonly monitored therapeutic drugs include:

• Antiepileptics.
• Antiarrhythmics.
• Antibiotics.
• Antineoplastics.
• Bronchodilators.
• Immunosuppressives.
• HIV/AIDS drugs.

Future Perspective

In the future, TDM will concentrate more on improving the patients’ quality of life as well as assessing toxicity effects. The objective will be not only to reduce side effects, but also to reduce the number of drug administrations and length of hospital stays. TDM is not just a concentration detection assay, but a way in which to provide individualized therapy. This analysis system requires not only clinical expertise and interpretation, but the integration of pharmacokinetics, pharmacogenetics and pharmacodynamics. During the next decade, the TDM market will undergo significant transformation. These changes will be caused by convergence of new and more stringent regulations; and intensifying competition.

It is possible that, in the future, TDM will involve not the mere measurement and interpretation of drug concentrations, but will include both traditional TDM and pharmacogenetics-oriented TDM. In contrast to traditional TDM, which cannot be performed until after a drug is administered to the patient, pharmacogenetics-oriented TDM can be conducted even before treatment begins.
Other advantages of genotyping over traditional TDM include, but are not limited to, the following: (1) it does not require the assumption of steady-state conditions (or patient compliance) for the interpretation of results; (2) it can often be performed less invasively (with saliva, hair root or buccal swab samples); (3) it can provide predictive value for multiple drugs (e.g., a number of cytochrome P450 (CYP) 2D6, CYP2C 19 or CYP2C9 substrates) rather than a single drug; (4) it provides mechanistic, instead of merely descriptive, information; and (5) it is constant over an individual's lifetime (and not influenced by concurrent drug administration, alteration in hormonal levels or disease states).

Pharmacogenetic information can be applied a priori for initial dose stratification and identification of cases where certain drugs are simply not effective. However, traditional TDM will still be required for all of the reasons that we use it now. In current clinical practice, pharmacogenetic testing is performed for only a few drugs (e.g. mercaptopurine, thioguanine, azathioprine, trastuzumab and tacrine) and in a limited number of teaching hospitals and specialist academic centers. It has been proposed that a variety of other drugs (e.g. warfarin, phenytoin, codeine, oral hypoglycaemics, tricyclic antidepressants, aminoglycosides, digoxin, cyclosporin, cyclophosphamide, ifosfamide, theophylline and clozapine) are potential candidates for pharmacogenetics-oriented TDM. However, prospective studies of pharmacogenetics-oriented TDM must be performed to determine its efficacy and cost effectiveness in optimising therapeutic effects while minimising toxicity. In the future, in addition to targeting a patient's drug concentrations within a therapeutic range, pharmacists are likely to be making dosage recommendations for individual drugs on the basis of the individual patient's genotype.

Other applications for TDM include antiretroviral (ARV) therapy for the treatment of HIV infection. This position arises because clinicians and pharmacologists are increasingly recognizing:

- The clinical/virological consequences of therapeutic failure.
- That there is a considerable amount of data demonstrating a great deal of inter-individual variability in the concentrations of ARVs among patients.
- That there is a considerable amount of data demonstrating relationships between drug concentrations and responses, either virological or toxicological.

Currently TDM as a method of determining the affect of different patient drug concentrations has been based on the measurement of the plasma concentration of parent drugs. In the future a variety of other methods have been identified that will be used to determine the therapeutic concentration of a particular drug on a patient. These will include:

- The measurement of dose-limiting toxicity of metabolites arising from the exposure to a particular drug.
- The emergence of new analytical methods, such as liquid chromatography combined with mass spectrometry or tandem mass spectrometry as a method of providing major improvements in specificity and sensitivity.
- The development of non-invasive methods such as nuclear magnetic reasonance (MRI) for the determination of drugs and active metabolite concentration and/or effects on targeted tissues
- The creation of innovative, highly specific and easier to use software as well as a better knowledge of pharmacokinetic-pharmacodynamic methodology among clinical pharmacist.