TABLE OF CONTENTS

1. Overview 8
 1.1 Objectives of the Report 8
 1.2 Methodology 9
 1.3 Scope of the Report 10
 1.4 Executive Summary 11

2. IVD Industry 19
 2.1 Industry Overview 19
 2.2 IVD Industry Leading Players Comparison and Review 19
 2.2.1 Roche Diagnostics 20
 2.2.2 Abbott Laboratories 22
 2.2.3 Siemens Healthcare Diagnostics 25
 2.2.4 Becton, Dickinson & Co. 26
 2.2.5 Beckman Coulter, Inc. 26
 2.2.6 Ortho-Clinical Diagnostics 31
 2.2.7 bioMérieux 32
 2.2.8 Sysmex 32
 2.2.9 Bio-Rad Laboratories, Inc. 32
 2.2.10 ARKRAY, Inc. 33
 2.2.11 Cytyc Corporation (A Hologic Company) 33
 2.2.12 Gen-Probe, Inc. 33
 2.3 Biotechnology Reagents and Supplies 34
 2.3.1 Vendor Quality Assurance 36
 2.3.2 Partnership Support 36
 2.3.3 Protecting Supply of Raw Materials 37
 2.3.4 Selecting a Second Source for Chemicals 38
 2.3.5 Cost Analysis for Reagent Manufacture 39
 2.3.6 Outsourcing Production of Reagents 39
 2.4 The Fastest Growing IVD Reagent Markets 39
 2.5 High Growth Applications Spur Industry Growth 40
 2.6 Automated Instrument Platforms Evolution 41
 2.7 Reagents and Supplies Market for Clinical Lab Instruments 41
 2.8 Spending for Clinical Laboratory Testing 41
 2.8.1 Reimbursement Pressure 42
 2.8.2 Medicare Part B Spending Trends 43
 2.8.3 Strategies for Revenue Growth 45
 2.8.4 Electronic Health Records 45

3. IVD Clinical Laboratory Instrument and Reagent Market 46
 3.1 Markets 46
 3.1.1 Global Markets 46
 3.1.2 Global Drivers of Clinical Laboratory Testing 48
 3.1.3 Global Outlook 49
 3.1.4 U.S. Market 50
 3.1.5 European IVD Instruments and Reagents Market 54
 3.1.5.1 German Clinical Laboratory Diagnostic Markets 63
 3.1.5.2 U.K. Clinical Laboratory Testing Diagnostic Product Market 65
 3.1.5.2.1 U.K. Competitive Analysis 65
 3.1.5.2.2 U.K. Market Access 67
 3.1.5.3 French Clinical Laboratory Diagnostic Testing Products Market 67
 3.1.5.4 Italian Clinical Laboratory Diagnostic Products Market 68
 3.1.5.5 Spanish Clinical Laboratory Diagnostic Market 69
 3.1.5.6 Finnish Clinical Laboratory Products Market 70
 3.1.5.7 Turkish Clinical Laboratory Products Market 71
 3.1.6 European Instruments and Reagents 54
 3.1.7 U.S. Market 50
 3.1.8 Global Health Care Markets 50

© 2012 TriMark Publications, LLC. All rights reserved. www.trimarkpublications.com
4.1.1 Ultra-Large Throughput Laboratory Analyzers 127
4.1.2 Large-Throughput Analyzers 134
4.1.3 Mid-size Clinical Laboratory Analyzers 145
4.1.4 Laboratory Analyzers for the Small Volume Market 148
4.2 Immunochemistry Analyzers 155
4.2.1 Large Immunochemistry Analyzers 155
4.2.2 Small Immunoassay Analyzers 163
4.3 Hematology Analyzers 166
4.4 Point of Care Testing 181
4.5 Microbiology Testing 186
4.6 Serology Testing 186
4.7 Esoteric Testing 186
4.8 Anatomic Pathology 187
4.8.1 Histology 188
4.8.2 IHC Staining 189
4.8.3 ISH Staining 189
4.8.4 Special Stains Staining 189
4.8.5 Tissue Staining Market 189
4.8.6 Cancer Diagnostics; Anatomic Pathology 190
4.9 Drug Testing 190

5. Important Technology Trends in IVD Instrumentation and Reagents 196
5.1 Technology Innovations in Instrument and Reagent Development 196
5.2 Sensor Systems for Diagnostic Applications 196
5.3 Glucose Measurements 201
5.4 Glucose Test Methods 204
5.5 Cholesterol Measurements 205
5.6 The New Paradigm 205
5.7 Consolidated Workstations 205
5.8 Automation in the Laboratory 207
5.9 Laboratory Information Systems 208
5.10 New User-friendly Interfaces 209
5.11 Biosensor Technology 210
5.12 Data-Management Issues 212
5.12.1 Wireless LANs 212
5.12.2 Cepheid’s POC GBS and BCR/ABL Tests 212
5.12.3 Data and Workflow Management Systems 213
5.12.4 Beckman Central Command 213

6. Business Trends in the Clinical Laboratory Analyzer and Reagents Market 215
6.1 Key Market Developments 215
6.1.1 Decreasing Revenue from Traditional IVD Markets 215
6.1.2 High Growth in POCT and Molecular Diagnostics Arena 215
6.1.3 Move Away from Traditional Kit Testing Methods 216
6.1.4 Integrated Analytical Systems 217
6.1.5 Regulatory Changes 217
6.1.6 Development of a Two-Tier Industry Structure 217
6.1.7 Labor Costs 218
6.1.8 Increasing Value of Companies with High-Margin Technology Platforms 218
6.1.9 The Joining of IVD Testing and Computer Technology 218
6.1.10 User-friendly User Interfaces 219
6.2 Sector Consolidation 220
6.2.1 IVD Company Consolidation 220
6.2.2 Lab Company Consolidation 225
6.2.2.1 Acquisition Pricing 226
6.3 Diagnostic Testing Growth Trends 226
6.4 Reagent and Hardware Business in Japan 226
6.5 New Products 227
6.6 Acquisition, License Agreements, Internal Development and Partnerships 228
6.7 Product Testing Depth in Clinical Laboratory Testing 230
6.8 Government Regulation of IVD Devices 230
6.8.1 U.S. Regulation 230
6.8.1.1 Importing Medical Devices into the U.S. 232
6.8.1.2 Exporting Medical Devices from the U.S. 232
6.8.2 E.U. Regulation 233
6.8.3 Japanese Regulation 236
6.8.4 Korean Regulation 237
6.8.5 Chinese Regulation 237
6.8.6 Post Filing Regulations for Medical Devices 238
6.8.7 Exporting Unapproved POCTs 239
6.8.8 Analyte Specific Reagents (Home Brew Tests) 239
6.8.9 Medical Device Registration 240
6.8.10 Product Labeling 240
6.8.11 Punitive FDA Actions 240
6.8.12 Clinical Laboratory Improvement Act of 1988 and State Laboratory Laws 241
6.8.13 Impact of Regulations on the Industry 241
6.8.14 Minimizing Regulatory Barriers 243
6.9 Increased Market Penetration 244
6.10 Costs of Doing Business in Europe 245
6.11 Drivers of European Diagnostics Testing 245
6.12 European Reimbursement Practices 245
6.13 Cost Containment in Europe 245
6.14 Hospital Outreach Programs 247
6.15 Electronic Procurement: New Challenges 248
6.16 Competition for Supply Chain Management Solutions 250
6.17 E-Commerce in the Hospital Supply Chain 251
6.17.1 Drivers of E-Commerce Solutions 252
6.17.2 Barriers to E-Commerce Solutions 252
6.18 Top Trends in IVD Instrument and Reagent Business Practices 255
6.19 The Value of the New Diagnostics 256
6.20 Converging Technologies—Drugs and Diagnostic Tests Combine for Improved Healthcare 257
6.21 Emerging Technologies in the Downstream Manufacture of Bio-Materials 257
6.22 GMP Readiness 257
6.23 Harnessing Human Resource Capabilities and IT Prowess: Biotechnology in the Future 258
6.24 Partnering with Patient-based Organizations to Achieve Patient Health Goals 258
6.25 Rumors of the Platform Company’s Demise are Greatly Exaggerated 258
6.26 Who’s Going to Pay for It? 259
6.27 Clinical Trials Testing. 260
6.28 Life Insurer Services. 260
6.29 Employer Services 261
6.30 Waived Testing 261
7. Company Profiles 262
7.1 Abaxis 262
7.2 Abbott 265
7.3 Adaltis, Inc. 267
7.4 Alfa Wasserman, Inc. (Formerly Electro-Nucleonics, Inc. and Schiapparelli Biosystems, Inc.) 268
7.5 Becton, Dickinson & Co. 268
7.6 Beckman Coulter, Inc. 268
7.7 bioMérieux 269
7.8 Hitachi 269
7.9 Horiba Ltd. 270
7.10 JEOL Ltd. 270
7.11 MEDTOX Scientific, Inc. 271
7.12 Myriad Genetics, Inc. 271
7.13 Nova Biomedical 272
7.14 Hologic, Inc. 272
7.15 Ortho-Clinical Diagnostics, a J&J Company 273
7.16 Roche Diagnostics Corp. 275
7.17 Shimadzu 276
7.18 Sysmex Corporation 277
7.19 Thermo Fisher Scientific, Inc. 277
7.20 Vital Scientific, NV 279
7.21 Tosoh Corporation 279

INDEX OF FIGURES

Figure 1.1: Worldwide Market Share Distribution of IVD Reagent and Instrument Testing 12
Figure 1.2: Top 13 Country Market Share Distribution of IVD Reagent and Instrument Testing 13
Figure 2.1: Market Share of Top Twelve Largest Diagnostic Companies Worldwide 20
Figure 2.2: Part B Spending on Clinical Laboratory Services, 1991-2005 44
Figure 3.1: IVD Product Demand 50
Figure 3.2: Global Market for Molecular Diagnostics, 2002-2016 53
Figure 3.3: European IVD Market by Clinical Specialty 56
Figure 3.4: Chinese IVD Market, 2006-2016 96
Figure 3.5: Principal Marketers in the IVD Industry 116
Figure 4.1: Global Revenue of Drugs of Abuse Testing Market Forecast, 2007-2015 191
Figure 4.2: U.S. Revenue of Drugs of Abuse Testing Market Forecast, 2007-2015 192
Figure 4.3: E.U. Revenue of Drugs of Abuse Testing Market Forecast, 2007-2015 193
Figure 6.1: Conformity Assessment Route, Annexes and Quality System Standards by IVD Device Category 234
Figure 6.2: Hospital Market Share for Outreach Programs 248

INDEX OF TABLES

Table 1.1: Worldwide Distribution of IVD Reagent and Instrument Testing Revenue, 2011 12
Table 1.2: Top 13 Country IVD Reagent and Instrument Testing Markets Revenues, 2011 13
Table 2.1: Top Twelve Largest Diagnostic Companies Worldwide 19
Table 2.2: Products Marketed by Abbott in the Diagnostic Market 24
Table 2.3: Beckman Coulter Market Share in Major Diagnostic Sectors 31
Table 2.4: Prodesse’s ASRs 36
Table 2.5: CMS Reimbursement for Top 25 Clinical Laboratory Procedures 44
Table 3.1: Worldwide IVD Testing Instrument and Reagent Market, 2011 46
Table 3.2: Worldwide Geographic Distribution of IVD Instrument and Reagent Markets, 2011 46
Table 3.3: Global Clinical Laboratory Instrument and Reagent Testing Market Sales, 1998-2016 47
Table 3.4: U.S. Clinical Laboratory Instrument and Reagent Testing Market, 2003-2016 51
Table 3.5: U.S. Clinical Laboratory Diagnostic Instrument and Reagent Test Market Segments, 2011 51
Table 3.6: U.S. Individual Clinical Chemistry Laboratory Diagnostic Test Markets, 2011 52
Table 3.7: U.S. Market for Molecular Diagnostics Testing, 2000-2016 53
Table 3.8: U.S. Market for Molecular Diagnostics Testing Instruments and Reagents, 2004-2016 54
Table 3.9: European Clinical Laboratory Testing IVD Reagents and Instruments Market, 2000-2016 54
Table 3.10: European Clinical Laboratory Diagnostic Testing Reagents and Instruments Market by Analyte, 2011 55
Table 3.11: European Clinical Chemistry Testing IVD Reagents and Instruments Market, 2000-2016 55
Table 3.12: European Clinical Laboratory Testing Diagnostics by Country Market, 2011 56
Table 3.13: German Clinical Laboratory Testing Diagnostics Products Market Sales, 2003-2016 63
1. Overview

The clinical laboratory in vitro diagnostic (IVD) testing market for reagent and instrument sales is one of the most important sectors of medical care. It is very mature, large and diverse—crossing the $48 billion mark worldwide—and employing over laboratory workers, with a companion industry for reagents and instruments comprised of thousands of companies worldwide. The term “clinical laboratory analysis” usually refers to determining the concentration or activity of a protein, carbohydrate, lipid, electrolyte, enzyme or small molecule in easily collected body fluids such as blood, serum, plasma, saliva or urine for the purpose of aiding in medical diagnosis and therapy. However, it is not necessarily limited to these determinations. The analysis of virtually any biologically-active substance in any place in the body can now be defined as clinical laboratory science. In fact, traditional specialization barriers such as microbiology, hematology, blood banking, immunology and even anatomical pathology are rapidly fading—both operationally and instrumentally—in the face of a more profound understanding of the genetic and molecular basis of disease states.

This report deals with the analysis of analytes that are related to the chemical constituents of blood, plasma or serum of the patient. The two most important areas where such tests are measured are in the hospital and the independent clinical laboratories. Also, these tests are performed in physician office laboratories (POLs), which are for the most part Clinical Laboratory Improvement Amendments (CLIA) approved. Newer areas of testing interest for these analytes can be satellite labs and pharmacies and corporate clinics, as well as independent specialty labs for drugs of abuse, cancer testing DNA and paternity testing, and others.

1.1 Objectives of the Report

The emphasis in this analysis is on those companies and products that are actively developing and marketing laboratory analyzer products for the clinical setting, including hospitals, independent labs, physician’s offices and miscellaneous clinics. This study concentrates on the clinical laboratory instrumentation industry market segment and the companion reagents sector in the U.S. and around the world. The regional markets and their differences are examined, including Europe, Asia (Japan, China and India) and the rest of the world (ROW). Particular attention is paid to those areas of the clinical laboratory instrumentation and reagents sector that are showing the greatest growth or the most innovation. This report attempts to answer the following questions:

- Which companies are the key players?
- What are the promising opportunities in clinical laboratory instrumentation and reagent markets?
- What is happening with the information revolution in lab instruments?
- What are the developing major trends?
- Where are the new clinical laboratory market growth areas?
- What are the most favored lab analysis technology platforms?
- Where is the laboratory analyzer instrument technology taking us?
- How is immunological technology blending with more established laboratory procedures?
- What are the key business trends in the IVD industry?

This analysis reviews the market for clinical laboratory instrumentation used in clinical practice. It defines the dollar volume of sales in each major regional market, as well as 25 individual European country markets, and it analyzes the factors that influence the size and the growth of the individual market segments. The report details market sizes and growth rates for the U.S. and world markets.

The study surveys some of the leading companies known to be marketing, manufacturing or developing products for the clinical laboratory instrumentation and reagent market for those sectors covered here. Each company is discussed in depth with a section on the history of the company, product lines, business and marketing analysis, and a subjective commentary of the position of the company in its market.

The unique benefits of this report are:

- In-depth analysis of the major sectors of the clinical laboratory, i.e., instrumentation and reagent sectors, their size, growth rates and major drivers.
- Presentation of some of the emerging technology platforms, elucidating the potential areas that could gain traction in this market.
- Analysis of the partnerships and alliances the various key sector players have forged, as well as describing financings of these market participants, giving insight into potential market collaborations.
- Examination of new technology platforms in the U.S., Japan and Europe that seek to dominate this mature market, and to identify lead positions and potential future growth areas.

1.2 Methodology

The author of this report is a Ph.D. in biochemistry from the University of Minnesota with many decades of experience in scientific writing and as a medical industry analyst. He has been a senior director of several large regional and national healthcare laboratories. He has over 30 years of experience in laboratory testing and instrument and reagent development technology as a licensed clinical laboratory director, as well as extensive experience in senior level management positions in biotech and medical service companies. The editor has a Ph.D. in medicinal chemistry from Medical College of Virginia, Virginia Commonwealth University, with postdoctoral work in clinical assay development and validation combined with molecular biology, and has worked in small and large pharmaceutical companies in the department of drug safety evaluation to support efforts in drug discovery and for commercialization of new chemical entities as drugs for over 15 years.

Company-specific information is obtained mainly from industry trade publications, academic journals, news and research articles, press releases and corporate websites, as well as annual reports for publicly-held firms. Additionally, sources of information include the non-governmental organizations (NGOs) such as the World Health Organization (WHO) and governmental entities like the U.S. Department of Health and Human Services (HHS) and U.S. federal agencies such as the National Institutes of Health (NIH), the Food and Drug Administration (FDA) and the Centers for Disease Control and Prevention (CDC). Where possible and practicable, the most recent data available have been used.

Some of the statistical information was taken from Biotechnology Associates’ databases and from TriMark’s private data stores. The information in this study was obtained from sources that we believe to be reliable, but we do not guarantee the accuracy, adequacy or completeness of any information or omission or for the results obtained by the use of such information. Key information from the business literature was used as a basis to conduct dialogue with and obtain expert opinion from market professionals regarding commercial potential and market sizes.

Primary Sources

TriMark collects information from hundreds of Database Tables and many comprehensive multi-client research projects, as well as Sector Snapshots that we publish annually. We extract relevant data and analytics from TriMark’s research as part of this data collection.

Secondary Sources

TriMark uses research publications, journals, magazines, newspapers, newsletters, industry reports, investment research reports, trade and industry association reports, government-affiliated trade releases and other published information as part of its secondary research materials. The information is then analyzed and translated by the Industry Research Group into a TriMark study. The Editorial Group reviews the complete package with product and market forecasts, critical industry trends, threats and opportunities, competitive strategies and market share determinations.

Market Forecasts and Modeling

The numerical data on market size, growth rates and sales forecasts are obtained from a well-examined model based upon quantitative market information obtained from the leading global companies in the sector, private seminar presentations by company experts and public SEC filings.
TriMark Publications Report, Research and Data Acquisition Structure

The general sequence of research and analysis activity prior to the publication of every report in TriMark Publications includes the following items:

- Completing an extensive secondary research effort on an important market sector, including gathering all relevant information from corporate reporting, publicly-available data and proprietary databases.

- Formulating a study outline with the assigned writer, including important items, as follows:
 - Market and product segment grouping, and evaluating their relative significance.
 - Key competitors’ evaluations, including their relative positions in the business and other relevant facts to prioritize diligence levels and assist in designing a primary research strategy.
 - End-user research to evaluate analytical significance in market estimation.
 - Supply chain research and analysis to identify any factors affecting the market.
 - New technology platforms and cutting-edge applications.

- Identifying the key technology and market trends that drive or affect these markets.

- Assessing the regional significance for each product and market segment for proper emphasis of further regional/national primary and secondary research.

- Completing a confirmatory primary research assessment of the report’s findings with the assistance of expert panel partners from the industry being analyzed.

1.3 Scope of the Report

This report deals with the analysis of analytes that are related to the chemical constituents of blood, plasma or serum of the patient. The two most important areas where such tests are measured are in the hospital and the independent clinical laboratories. Also, these tests are performed in physician office laboratories (POLs), which are for the most part Clinical Laboratory Improvement Amendments (CLIA) approved. Newer areas of testing interest for these analytes can be satellite labs and pharmacies and corporate clinics, as well as independent specialty labs for drugs of abuse, cancer testing DNA and paternity testing, and others.

The emphasis in this report is on those companies and products that are actively developing and marketing clinical laboratory instrumentation and reagents and supplies for performing clinical laboratory tests in clinical diagnostics. The reader should consult other TriMark Publications reports at www.trimarkpublications.com for a detailed discussion of the other areas with the clinical laboratory market. A companion report, Clinical Laboratory Testing Volume 2: Key Players for Laboratory Testing, Business Trends and Strategies, deals primarily with the business aspects of running a clinical laboratory.

This study does mention companies that market and sell a limited number of instruments and equipment as an OEM part of a much larger clinical laboratory product line by other companies, for example: 1) Hitachi and its relationship with Roche Diagnostics Corporation, 2) JEOL manufacturing products for Bayer, or 3) Furuno Electric Co. and Polymedco and their relationship with Randox.

The examination of markets does not cover in detail what is generally characterized as anatomic pathology, microbiology, blood banking or other diagnostic device markets, although many of the instruments, reagents and techniques in the clinical laboratory diagnostics market segment are intimately associated with these broader areas. Moreover, this review does not cover disposable plastic supplies for the clinical laboratory or blood gases and electrolytes. All of these subjects are treated thoroughly in other TriMark Publications reports.

Although this report mentions many common lab procedures and analytes, as well as techniques such as measuring the serum concentrations of therapeutic drugs, drugs of abuse, genetic testing and molecular diagnostics, no extensive or in-depth treatment of this subject is presented. Such a discussion is outside the scope of this analysis.
This report reviews the clinical lab reagents and equipment market in the U.S. and worldwide. This market can be divided into four broad areas: 1) hospital market, 2) independent lab market, 3) doctor’s office market, and 4) the clinic market (Point of Care, Critical Care, etc.), to a much lesser extent.

1.4 Executive Summary

Clinical laboratory testing includes processes used to detect levels of enzyme, sugars, proteins and other substances in the blood in order to determine such clinical conditions pertaining to nutritional state, organ function, such as liver and kidney function and others. Such testing is widely applied in clinical medicine in identifying conditions like diabetes, hyperlipidemia and arteriosclerosis during clinical diagnoses and as a part of regular health checkups. During over clinical laboratory tests were carried out within hospitals in the U.S. This figure is forecast to grow to over tests per annum by . Most of these tests were performed as screening, or multi-channel tests, performed on automated laboratory analyzers specifically designed for that purpose. Automated multi-channel testing addresses those tests that can be done as groups and combinations on automated clinical laboratory equipment.

The global IVD reagent and instrument market for all test types was estimated to be $ in , up % over the previous year which was consistent with the predicted growth rate, with the U.S., Europe and Asia (Japan, China and India) comprising approximately %, % and %, respectively, of the market.

<table>
<thead>
<tr>
<th>Sector</th>
<th>Sales ($ Billions)</th>
<th>Share (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Europe¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Asia²</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROW</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: 72 countries as of 2010; ¹Japan, India, China. ²Source: Biotechnology Associates

The distribution of clinical laboratory testing worldwide shows dominance in North America and Europe. The European Union (E.U.), Japan and the U.S. currently make up over % of the IVD reagents and instruments market. This portion is expected to decrease to % by due to erosion of mature country market segments, and the expanding IVD markets in Asia, particularly China. In addition, IVD markets in South America and South Asia are experiencing % to % annual growth rates, respectively. Japan has been slow to adapt clinical laboratory testing for point of care, considering its size as the second-largest economy in the world, and its position as manufacturer of many OEM laboratory instruments. The Japanese medical establishment is ultraconservative, and very slow to adapt to change. And, therefore, the Japanese IVD market is forecast to growth by somewhat less than % during the forecast period.
Table 1.2: Top 13 Country IVD Reagent and Instrument Testing Markets Revenues, 2011

<table>
<thead>
<tr>
<th>Country</th>
<th>Sales ($ Millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S.</td>
<td>18,500</td>
</tr>
<tr>
<td>Japan</td>
<td>3,800</td>
</tr>
<tr>
<td>Germany</td>
<td>3,200</td>
</tr>
<tr>
<td>France</td>
<td>2,900</td>
</tr>
<tr>
<td>Italy</td>
<td>2,600</td>
</tr>
<tr>
<td>Spain</td>
<td>1,500</td>
</tr>
<tr>
<td>China</td>
<td>2,200</td>
</tr>
<tr>
<td>U.K.</td>
<td>2,500</td>
</tr>
<tr>
<td>Brazil</td>
<td>872</td>
</tr>
<tr>
<td>India</td>
<td>531</td>
</tr>
<tr>
<td>Canada</td>
<td>525</td>
</tr>
<tr>
<td>Australia</td>
<td>293</td>
</tr>
<tr>
<td>Turkey</td>
<td>267</td>
</tr>
</tbody>
</table>

Source: Biotechnology Associates

The IVD industry has growth opportunities in Europe. This opportunity is partly due to the large and expanding markets of central Europe (e.g., Poland, Hungary, the Czech Republic and Turkey). The infrastructure and demographic trends of the countries of the E.U. are similar from nation to nation. Europe is characterized by compulsory health insurance, high coverage and public ownership of hospitals. One of the most important factors of uncertainty in European business, the exchange rate risk, has largely disappeared with the creation of European Community.

Of course, there are major differences among the Europeans who complicate the possibility of the growth of the IVD industry. At least 50 languages are spoken in Europe, and countries are insisting, for political reasons only, that national languages appear on product labeling. Tax and labor laws vary from country to country, as do social security systems. Above all, there are widely differing and continually changing reimbursement and payment procedures among the national healthcare delivery systems.

The key growth opportunities however are in the Asia-Pacific region. This growth is propelled by increased affluence, awareness, and spending on healthcare in this region and is expected to experience double digit growth over the next five years and account for % of the world market by . While the swelling Asian economies continue to fuel demand for IVD, participants in this market must overcome challenges related to distribution channels, intellectual property protection, and a strong local industry to achieve optimum market development.

Ten companies control approximately % of the total $48 billion diagnostics reagent and instrument industry revenue. The worldwide IVD market is estimated to be growing at % to % per year and will reach an estimated $ by and $ by . Although more than major companies are involved in the global market for clinical diagnostics, only eight have sales of over $, creating an environment that is still ripe for consolidation and partnering. Among the largest IVD companies, Roche and Johnson & Johnson (J&J)—including Ortho-Clinical Diagnostics (OCD) and LifeScan—grew the fastest.

While clinical chemistry and immunoassays will remain the largest revenue parts of the global IVD industry through , nucleic acid products (molecular diagnostics)—especially those that detect endocrine imbalances, infectious disease and cancers—will generate the fastest gains. The growth of this sector is estimated to be a CAGR of % to %, depending on the individual sub-category. It is expected that this market will grow to over $ by . Applications used for DNA-based forensic, genetic, and identity testing will sustain the strongest gains in demand.

TriMark believes that the global IVD reagent and instrument market will continue to grow due to a number of key favorable industry trends:
Demographic shifts resulting from the aging of the population and socio-economic improvements are expected to increase the overall level of demand for diagnostic testing.

Increased focus on lowering total healthcare expenditures will likely increase demand for diagnostic testing as an effective tool to improve patient outcomes and reduce the costs of misdiagnosis through earlier and more accurate diagnosis and patient monitoring.

Emerging markets will provide additional demand as economic improvements in these countries lead to increases in healthcare expenditures.

Technology improvements in new tests, pathogens and markers will result in the increased use of diagnostics to aid in the diagnosis of diseases.

Improvements in lower-cost POC/near-patient testing capabilities are expected to expand the application of diagnostic testing capabilities into non-laboratory settings (e.g., operating room, emergency room [ER], acute care centers, etc.).

Increased automation of diagnostic instruments is expected to lower the overall cost of diagnostic testing and thereby increase accessibility and demand.

In 2011, Food and Drug Administration (FDA) approved new assays which resulted in significant growth in the in vitro diagnostics market in the U.S. and will continue to drive market growth over the next few years.

In the U.S., approximately □% of the $□ billion U.S. clinical diagnostic testing is currently conducted in hospital-based and commercial laboratories. Clinical chemistry laboratory testing now represents □% of the $□ billion U.S. market for clinical diagnostic testing reagents, controls and equipment, or $□ billion in □, and is projected to grow at an annual rate of □% in the U.S. through □ to a total of $□ billion. Surveys show that □% of hospitals with more than □ beds have adopted some form of clinical laboratory testing, with over □% of the □ U.S. hospitals (□-bed size and larger) having installed some form of clinical laboratory instrumentation over the □ months.

The European estimate of □ countries had a total IVD market of $□ billion. With an expected real growth at a compounded annual growth rate (CAGR) of □% to □% through □, estimates suggest that the market for IVDs in the E.U. will reach $□ billion by □. The E.U. is second only to North America’s □% market share of IVD products, with $□ billion in sales. Overall European IVD market performance is inconsistent, with large differences from country to country and from product type to product type. For example, strong growth is seen in emerging countries of the former Eastern Bloc, such as Hungary, Poland and the Czech Republic, along countries with relatively low per-capita expenditure for in vivo testing like the Netherlands. In contrast, growth in the major markets like Germany remains somewhat lower. Central and Eastern Europe have large potential for a further increase in market based on spending as a percent of GDP. Growth sectors in the European IVD sector are:

- Molecular diagnostics.
- Microbiology.
- Immunoassay cardiac tests.
- Blood glucose testing.

In contrast, growth in the clinical chemistry sector has been slow because of pricing pressures and laggard implementation of diagnosis related groups (DRG). While the U.K. has been reducing hospital laboratory fees, private labs and POLs will continue to receive appropriate fees and reimbursement. The primary drivers of the shift toward more laboratory automation in Europe are:

- Pressures from labor unions.
- A shortage of qualified medical technicians.
- The availability of laboratory space.

In addition, in several countries such as Germany and France, microbiology testing must be completed within □ hours in order to be reimbursed, resulting in an increased shift to automation and adoption of POCT. IVD product manufacturers in Europe are responding to several major trends. These include automation and standardization, adoption of POCT, and hospital consolidation. Japanese companies manufacturing medical instruments for the U.S.
market have experienced a competitive advantage by the nearly 50% fall in the yen. Ironically, the global economic forces that depressed the value of the yen relative to the dollar have played directly to the overall strategy of Japanese industry, which is to commoditize industrial products while leveraging their advantage in process control, operational costs and market dominance.

The much higher growth rates for medical and diagnostic products that were being achieved in Latin America and the Pacific Rim countries during the last decade are now in serious jeopardy. The worldwide economic collapse has all but guaranteed negative growth rates for this region. These relatively new areas of medical instrumentation are home to over three billion people, who are beginning to demand modern medical services on a level seen in the industrialized countries of North America, Europe and Japan. Emerging economies of countries like China, Taiwan, Thailand and South Korea were showing growth rates three to four times larger than the industrialized countries. This market segment reached over $3 billion in sales by 2009. If world economic recovery is slow, IVD industry growth rates could be negative in these countries for some time.

Ultra-large Throughput Laboratory Analyzers

The ultra-large clinical laboratory analyzer market is identified by the use of instruments with throughputs of substantial size, usually over 2,000 tests per hour. These large-capacity instruments are used primarily in large university teaching and research hospitals and medical centers and, of course, the large commercial or reference labs. The laboratories with annual volumes of over ten million tests per year would encompass this market. Instruments that are fully-automated, including accessibility to robotic lines, characterize the analyzers at this top end of the market. This category of analyzers consists of instrument systems marketed by, Beckman Coulter, JOEL, Roche Diagnostics, Abbott and Siemens. These very large and expensive instruments are sold only to the very limited number of large medical centers and big commercial labs. These customers are generally very price-savvy and demand substantial discount arrangements for hardware and reagents. However, these difficulties are often offset for the manufacturers of large-capacity products by the very high-volume usage of reagents and other consumables.

Large Throughput Analyzers

The high-volume clinical chemistry laboratory market segment, with testing greater than 5,000 tests per day, has been estimated to be $1.28 billion. These large-throughput analyzers are used primarily in large hospitals and second-level reference labs. The laboratories with annual volumes of between one million and five million tests per year would encompass this market. The analyzers at this top end of the market are characterized by instruments capable of performing 1,000 to 2,000 tests per hour and are fully-automated. This category of automated clinical laboratory analyzer constitutes the heart of the laboratory analyzer market. These instruments are marketed to the broad category of large hospitals, clinics, and medium-sized private commercial laboratories. These users comprise the largest market segment in terms of use of reagents and other consumable items available for repeat sale.

Mid-size Clinical Laboratory Analyzers

This market segment is the next large part of the automated clinical laboratory analyzer market and encompasses both hospitals and commercial laboratories. The broadest market for automated laboratory analyzers has always been the traditional mid-size community hospital. The number of these hospitals has decreased by 7% in the last five years due to restructuring; however, the actual number of institutions in the 200- to 500-bed range remains the highest of any segment of the laboratory analyzer market. Remember—regardless of size—all hospitals need some type of laboratory analyzer for continued patient care. The mid-size market segment laboratories usually perform between 500 and 800 patient profiles per day. Based on an average of 24 chemistries per profile, this equals about 12,000 to 15,000 tests per day. This equates to an analyzer throughput of 400 to 1,000 tests per hour. Currently, this throughput can be achieved by a relatively large number of available automated laboratory instruments.

Automated laboratory instruments in this class have a throughput capacity of about 400 to 1,000 tests per hour. They are marketed to the large number of mid-sized hospitals with between 200 and 500 beds. Also, some large group practice labs have enough profiling to use these instruments effectively. Beckman Coulter sells several general laboratory systems for use in the clinical laboratory laboratories of medium to large hospitals and to reference laboratories. The company’s line of Synchron automated general laboratory analyzers is a family of modular
diagnostic instruments and reagents, standards and other consumable products required to perform commonly requested diagnostic tests.

Laboratory Analyzers for the Small Volume Market

The VITROS® 5600 is the next generation system is uniquely designed to integrate clinical chemistry and immunoassay testing to increase laboratory productivity and will be able to perform more than different chemistry, immunoassay and infectious disease assays on a single, high-quality system. In addition to its current broad menu including user-defined applications, the VITROS® 5600 Integrated System will have the capability to run future tests for earlier detection of diseases.

The lower end of the market for automated clinical laboratory analyzers is for throughput capacities of less than tests per hour. These instruments are marketed to small hospitals, satellite labs and doctor’s offices. Ortho-Clinical previously made the Vitros 250™ Analyzer, which was first sold in the U.S. in This instrument has been replaced with the Vitros 350, which has up to on-board chemistries and has a throughput of up to results per hour. Time to first result is % faster than the Vitros 250 and with its enhanced software throughput is improved % to % over the Vitros 250. The Vitros 350 analyzer targets mostly relatively low-volume users like doctor’s group practices and small community hospitals. The instrument is particularly suited to smaller institutions, which have limited staffing, because the dry laboratory reagents which the system uses offer distinct advantages over liquid-based systems.

Immunochemistry Analyzers

Some of the clinical chemistry analyzers already discussed includes methods to quantitate proteins and metabolites utilizing latex immunoassay methods and turbidimetric immunoassays. These instruments generally do not have the capability of measuring low levels of fertility hormones, tumor markers and cardiac markers. However, the type of instrument that falls in the category of immunochemistry analyzer are designed to measure low levels of hormones, cancer markers, infectious disease antigens and antibodies. These analytes used to be measured utilizing radio immunoassay (RIA) techniques. Current instruments use chemiluminescence, fluorometric enzyme immunoassays (EIA) methods, among others to quantitate these hormones and markers.

One of the most important features that immunochemistry analyzers need today is the ability to measure B-type natriuretic peptides (BNP) and NT-proBNP. The instruments that have this ability today are the following, for BNP: Abbott Architect, Abbott AxSYM, Siemens ADVIA Centaur (and the older ACS: 180), Beckman Coulter Synchron, as well as the manual Triage; and for NT-proBNP: Dade Behring (now a part of Siemens) Dimension Vista and Stratus CS, Roche E170, and Roche Elecsys Systems.

Lab Company Consolidation

The top-heavy independent lab sector, with many competing regional labs, continues to consolidate. Two deals, Clinical Pathology Laboratories’ (CPL) purchase of Cognoscenti and American Esoteric Laboratories’ (AEL) Texas acquisition, focused on big players in the Southeastern U.S. Both CPL and AEL are a part of Sonic HealthCare. More acquisitions are predicted for the next few years, especially given the deep pockets behind some recent purchases, money coming from venture firms. The number of sizable independent labs up for sale is dwindling fast, asking each new deal richer than the last. Interest in cancer testing and genomic labs is increasing in the investment community.

There has been a significant move by companies that sell IVD equipment and reagents to provide one-stop shopping to hospitals and other customers. The idea is to offer a range of products that can fit into almost every niche in the diagnostic market and therefore widen the appeal of one company and increase market share. Over the years, consolidation moves in the diagnostic industry have included some top companies:

- Abbott acquires MediSense, Inc.
- Abbott acquires i-STAT Corp.
- Dade International merges with Behring Corp.
- Roche Diagnostics acquires Boehringer Mannheim.
• Beckman merges with Coulter.
• Abbott acquires Murex Diagnostics.
• Bayer Corp. acquires Chiron Diagnostics.
• Bio-Rad acquires Sanofi Pasteur Diagnostics.
• Roche Diagnostics acquires AVL Medical Instruments, Inc.
• bioMérieux merges with Pierre Fabre.
• Radiometer Analytical acquires SenDx Medical, Inc.
• Danaher Corp. acquires Radiometer Analytical.
• Siemens acquires Bayer Diagnostic.
• BioRad acquires Sanofi-Pasteur.
• Roche acquires AVL.
• Radiometer is acquired by the Danaher Corporation.
• Nanogen acquires Spectral Diagnostics, but then itself disappears in receivership.
• Bayer sells Diagnostics (but not self-testing for glucose) to Siemens.
• Siemens acquires Diagnostics Product Corporation and Dade Behring.
• Inverness Medical Innovations acquires Biosite, and changes its name to Alere.
• Beckman-Coulter acquires the clinical lab products division of Olympus.
• BD acquired Handy Lab, a company specializing in molecular diagnostic products.
• Abbott acquired Ibis in a bid to strengthen molecular diagnostics.
• Roche acquired Nimblegen.
• Gen-Probe acquired by Hologic.
• Danaher acquired Beckman-Coulter.

Acquisitions resulting in continuing consolidation of the clinical laboratory products segment continue at a furious pace. Mergers of diagnostic companies and clinical laboratories will continue at a rapid pace. The early 21st century will finally see a small group of dominant players in the diagnostics industry.

The principal actors in the IVD reagent and instrument diagnostics space are Roche, Abbott, Siemens, Beckman-Coulter, Ortho Diagnostics and Alere. However, there are a large number of smaller companies serving niche markets. These companies find a niche within the diagnostic space and prosper by direct selling and partnering with larger companies. There will always be a great number of emerging or startup companies in areas such as POCT where technical innovations are coupled with new market opportunities.

The diagnostics industry has gone through the classic phases of the industry life cycle—technology-driven emergence, fast growth, maturity and consolidation. The consolidation phase has seen mergers, bankruptcies, and a serious worsening of the return on capital employed.