CELL-BASED ASSAYS FOR DRUG DISCOVERY
(SAMPLE COPY, NOT FOR RESALE)

Trends, Industry Participants, Product Overviews and Market Drivers
TABLE OF CONTENTS

1. Overview
 1.1 Objectives of the Report 4
 1.2 Methodology 5
 1.3 Scope of the Report 6
 1.4 Executive Summary 7

2. Technologies and Product Offering for High-Content Analysis
 2.1 Definition of High-Content Analysis and Why It Is So Attractive a Discipline 10
 2.2 Classes of Measurements Possible with High-Content Analysis Approaches and Biological Functions Investigated 14
 2.3 Instrumentation Platforms for High-Content Analysis 18
 2.3.1 High-Content Screening Technology 18
 2.3.2 High-Content Instruments 18
 2.4 Reagent and Assay Platforms for High-Content Analysis 24
 2.5 Cell-based Screening Technologies in Drug Development 29
 2.5.1 Applications of Cell-based Assays 29
 2.5.2 Pharma Drug Discovery Paradigm and Compound Screening 29
 2.5.3 High-Content Analysis in the Biopharmaceutical Industry 30

3. Market Analysis of the High-Content Tools Space
 3.1 High-Content Analysis Market Size and Growth 32
 3.2 Market Survey to Assess Qualitative and Quantitative Parameters of the High-Content Analysis Space 32
 3.3 Experimental and Research Trends in High-Content Analysis 34
 3.4 Challenges and Market Drivers in High-Content Analysis 39
 3.4.1 Barriers to High-Content Analysis 41
 3.4.2 Drivers of High-Content Analysis 42
 3.5 High-Content Analysis in Combination with RNAi 42
 3.6 Market Landscape of Instrumentation for High-Content Analysis 44
 3.7 Reagent and Assay Usage in High-Content Analysis 48
 3.8 Trends in the High-Content Analysis Assays/Reagents Space—Major Product Vendors 51
 3.9 Emerging Market Trends in High-Content Analysis 53
 3.10 Market Forecasts for the High-Content Analysis Space 55
 3.11 Use of HCS/HCA in Pharmaceutical Companies 57
 3.12 Qualitative Opportunities and Challenges for Market Adoption 58

4. Strategic Analysis of the High-Content Tools Space
 4.1 Analysis of the High-Content Market Structure 59
 4.2 Description of the Drug Discovery Marketplace and Definition of the Field 59
 4.3 Key Market Drivers and Challenges in the High-Content Analysis Space 60
 4.4 Consolidated Picture of the High-Content Analysis Marketplace 64
 4.5 High-Content Analysis Market Sectors and Growth Rate 65
 4.6 Vendors of High-Content Analysis Technology 65

5. High-Content Analysis Technology Platforms
 5.1 Methods of Digital Imaging 66
 5.2 Fluorescence Microscopy 66
 5.3 Major High-Content Analysis Instrumentation 67
 5.3.1 High-Content Analysis Platforms to Support GPCR Screening 68
 5.4 High-Content Analysis Reagents 68
 5.5 Imaging Software 69
 5.6 Enterprise-Level IT Solutions to Support High-Content Screening Experiments 69
 5.6.1 Image Analysis Algorithms 70
 5.7 Use of RNAi in High-Content Analysis 71
 5.8 Industry Alliances to Leverage RNAi and High-Content Analysis 71
 5.9 Emerging Trends in High-Content Analysis Technology Platforms 72

6. High-Content Analysis in Drug Selection, Screening and Biomarker Discovery 73
 6.1 Stem Cells as Tools for Drug Discovery 74
 6.2 Cellular Systems Biology for Development of Toxicity Panels in Drug Safety Testing 74
 6.3 Drug Discovery Companies Marketing Cell-based Assays 75
 6.4 Companies Using Cell-based Assays in Drug Discovery Programs 78
6.4.1 Phenotypic Drug Discovery (PDD) 78
6.4.2 Application of Quantitative High-Throughput Screening to HCA Cell-based Assays 78
6.4.3 Application of High-Content Fingerprinting to Oncology Drug Discovery: Focus on In Vitro and In Vivo Phenocopying and Cancer Stem Cell Analysis 79
6.5 Target Discovery and Validation by RNAi Screening 79
6.6 FLIM-FRET Methodology 79
6.7 Multidimensional Fluorescence Imaging (MDFI) Technology 79

7. Company Profiles 80
7.1 Acumen Pharmaceuticals, Inc. 80
7.2 Acumen Bioscience (division of TTP Group) 80
7.3 Applied Biosystems 80
7.4 BD Biosciences 82
7.5 DiscoveRX 82
7.6 Evotec Technologies (acquired by PerkinElmer) 82
7.7 Fisher BioImage 82
7.8 General Electric, GE Healthcare 83
7.9 Guava Technologies (now a division of Millipore) 83
7.10 Integral Molecular (Akceli Inc.) 84
7.11 LemnaTech GmbH 84
7.12 Millipore 84
7.13 Molecular Devices Corporation, now a division of MDS Analytical Techniques 86
7.14 NIH Chemical Genomics Center 88
7.15 PerkinElmer 89
7.16 Sangamo Biosciences, Inc. 91
7.17 Spotfire (acquired by TIBCO) 91
7.18 Thermo Scientific Cellomics 92
7.19 Translational Genomics Research Institute 92
7.20 Vala Sciences, Inc. 92

8. Glossary of Terms in the High-Content Analysis Space 93

LIST OF FIGURES

Figure 2.1: Scope of Biological Parameters Addressed Via a Typical High-Content Analysis Experiment 13
Figure 2.2: Classes of Assays in Life Science Research and Drug Discovery Illustrating the Relationship between Cell-based Assays and High-Content Analysis 14
Figure 2.3: New Paradigm for Drug Discovery and Development Illustrating the Central and Essential Role of Screening 16
Figure 2.4: Cumulative Known and New Drug Targets 31
Figure 3.1: Breakout of Market Survey Respondents by Geographical Location 32
Figure 3.2: Breakout of Market Survey Respondents by Affiliation—Academic, Commercial, Vendor 32
Figure 3.3: Segmentation of Respondent Pool Based upon Usage of High-Content Analysis in its Research Activities 33
Figure 3.4: Segmentation of the Survey Respondent Pool Based upon the Length of Time they have been Using High-Content Analysis in Their Research Activities 33
Figure 3.5: Number of Parameters Studied Simultaneously in High-Content Analysis Assays—Multivariate (Multi-Parameter) Analyses 35
Figure 3.6: Key Biological Processes Studied Utilizing High-Content Analysis Tools 36
Figure 3.7: Breakout of High-Content Analysis Assays Currently Performed or Expected to be Performed in the Future by Biological Pathway (or Target) 37
Figure 3.8: Breakout of High-Content Analysis Experiments Performed Per Week (Distributed in our Respondent Pool) Across the Various Biological Pathways (and Targets) 37
Figure 3.9: Which of the Biological Processes (Pathways/Targets) Addressed Using High-Content Analysis-based Approaches are Growing in Importance and which are Declining? 38
Figure 3.10: In Which Environment are High-Content Analysis Assays Performed—Primary Screen, Secondary Screen, ADME/Tox Screen? 39
Figure 3.11: Key Challenges Faced by the Research Community in its Practice of High-Content Analysis 40
Figure 3.12: Various Drivers Leading the Research Community to Perform High-Content Analysis 41
Figure 3.13: HCA with RNAi—Current and Future Experimental Formats 43
Figure 3.14: HCA with RNAi—Number of Experiments Performed Per Month by the Survey Respondent Pool 43
Figure 3.15: Growing and Steady Usage of Various Formats where RNAi is coupled with HCA 44
Figure 3.16: Penetration of the Different High-Content Analysis Instrumentation Platforms into the Marketplace 45
Figure 3.17: Instrumentation Platforms for High-Content Analysis Ranked by Top Choice and Second Tier 46
Figure 3.18: High-Content Analysis Instrumentation and where they Lie on the Throughput Curve 47
Figure 3.19: Top Instrumentation Value Drivers in the High-Content Analysis Space 47
Figure 3.20: Important Sub-Cellular Features Studied via High-Content Analysis Approaches 48
Figure 3.21: Breakout of End-Point Versus Kinetic Assays in the High-Content Analysis Space 49
Figure 3.22: Types of Cellular Targets Studied Using High-Content Analysis Approaches 49
Figure 3.23: Top-most Target Class Studied Utilizing High-Content Analysis Approaches 50
Figure 3.24: Distribution of High-Content Analysis Experiments across the Respondent Pool—Number of Experiments Performed Per Week 50
Figure 3.25: Average Reagent/Assay Costs Per High-Content Analysis Experiment 51
Figure 3.26: Stratification of Reagent/Assay Suppliers into the High-Content Analysis Space 52
Figure 3.27: Monthly Reagent/Assay Purchases for High-Content Analysis by End-user Community from Various Vendors 52
Figure 3.28: Growth or Decline in Importance of the Various High-Content Analysis Vendors to End-user Community 53
Figure 3.29: Percentage of High-Content Analysis Experiments that Involve GFP Across the Market Landscape 54
Figure 3.30: Breakout of High-Content Analysis Reagents Marketplace: Made-in-House Versus Off-the-Shelf 55
Figure 3.31: Breakout of Spending on Various Components of the High-Content Analysis Discipline 55
Figure 3.32: Historic/Forecast Growth of the Total Screening Space, Broken-out by Primary Screening, Secondary Screening (including High-Content Analysis as a Subset) and ADME/Tox, for 2004-2016 56
Figure 3.33: Historic/Forecast Growth of the Screening Space—Broken-out by Cell-based Assays and Biochemical Assays, 2004-2016 57
Figure 4.1: Drug Discovery and Development Ensemble and the Position of the Various Segments of High-Content Analysis in the Space 62
Figure 4.2: Relative Size and Position of the High-Content Analysis Space in the Overall Scheme of the Life Science Tools Marketplace 65
Figure 5.1: High-Content Analysis—Positional Biosensors Using Caspases and Monitoring the Translocation of a Tagged Protein from the Cytoplasm to the Nucleus 70
Figure 6.1: HCA Target Classes: Breakout of Current Drug Targets into Their Constituent Classes 73
Figure 6.2: GPCR Assay Technologies 74

LIST OF TABLES

Table 2.1: Comparison of the Key Features of High-Content Analysis and High-Throughput Screening 11
Table 2.2: Impact of High-Content Analysis on Drug Discovery—Impact of Several Drivers 12
Table 2.3: Biological Application Areas Associated with High-Content Analysis 13
Table 2.4: Classes of Measurements and Targets Identified Using Phenotypic Screening (High-Content Analysis) 14
Table 2.5: Classes of Cellular Measurements Possible with Fluorescent Protein Biosensors 16
Table 2.6: Multi-Parameter High-Content Analysis Assays to Study Biological Systems in Life Science Research and Drug Discovery, Demonstrating the Breadth and Scalability of the High-Content Analysis Approach 17
Table 2.7: Companies Offering Systems for High-Throughput Imaging 19
Table 2.8: Comparison of the Major Instrumentation Platforms and Associated Specifications for High-Content Analysis—I 20
Table 2.9: Comparison of the Major Instrumentation Platforms and Associated Specifications for High-Content Analysis—II 20
Table 2.10: Price Points and Target Markets of the Various High-Content Analysis Instrument Platforms 21
Table 2.11: Companies Offering Flow Cytometry Products and Services 21
Table 2.12: Integrated Product Platforms Offered by the Different High-Content Analysis Vendors 23
Table 2.13: High-Content Analysis Assays Developed by Thermo Scientific Cellomics 25
Table 2.14: Thermo Scientific Cellomics HCS Reagent Kits (formerly called “HitKits”) and Their Therapeutic Areas of Application 26
Table 2.15: Millipore's HCA Assay/Reagent Portfolio 27
Table 2.16: Cell Lines for GPCR High-Content Analysis that can be Deployed onto the BD Biosciences/Atto Pathway HT™ Instrument Platform 28
Table 2.17: Examples of High-Content Screens 30
Table 2.18: What Fraction of High-Content Analysis Assays are Cell-based Versus Biochemical-based 34
Table 4.1: Comparison of the Key Features of High-Content Analysis and High-Content Screening 60
Table 4.2: Snapshot of the Various HCA Assays, Demonstrating the Scalability of this Discipline 63
Table 5.1: Modes of Digital Imaging 66
Table 5.2: Modes of Fluorescence Microscopy 66
Table 5.3: Major High-Content Analysis Instrumentation 67
Table 5.4: Image Analysis Algorithms 70
1. **Overview**

There are several tools emerging to aid the area of drug discovery, and high-content screening (HCS) or high-content analysis (HCA) is one of the most important sectors of pharmaceutical research and development. HCS or HCA is usually also broadly referred to as “drug discovery tools”, thereby indicating the importance of HCS as a tool in discovering new drugs. HCS is composed of those applications that require appreciable levels of sample throughput, to encompass the study of complex cellular events and phenotypes. Commonly used criteria for drug performance such as toxicity and specificity can be established simultaneously using mixed cell types—primary cells, cell lines and cell subpopulations. HCS seeks to assess the impact of phenotypic and cellular changes that are brought about by gene modification (such as with RNA interference [RNAi] approaches) and/or drug (or compound) treatment in an automated fashion.

1.1 **Objectives of the Report**

The purpose of this presentation is to describe the specific segments of the global drug discovery tools market. Within this area, the report covers those segments that are highly active in terms of innovation and growth. Specifically, this study examines the markets for small lab equipment all the way up to large automated platforms, as well as accessory equipment such as reagents, supplies and additional equipment from original equipment manufacturers (OEMs).

The emphasis in this analysis is on those companies and products that are actively developing and marketing drug discovery tools for the pharmaceutical industry, including traditional pharma companies as well as biotech and bioscience companies. This study concentrates on the laboratory instrumentation industry market segment and the companion reagents sector in the U.S. and around the world. Particular attention is paid to those areas of drug discovery instrumentation/reagents that are showing the greatest growth or the most innovation. The report attempts to answer the questions:

- Which companies are key players?
- What is the market for high-content analysis (HCA)?
- What are the opportunities in drug discovery tools markets?
- What is happening with the information revolution in lab instruments?
- What are the developing trends?
- Where are the new market growth areas?
- What are the most favored technology platforms?
- Where are the emerging drug discovery tools technologies for HCA taking us?
- How is high-content drug discovery technology blending with the more established laboratory procedures?
- What are the business trends in the industry?

The analysis surveys some of the leading companies known to be marketing, manufacturing or developing products for the drug discovery instrumentation and reagent market for those sectors covered here. Each company is discussed in depth with a section on the history of the company, the product line, business and marketing analysis, and a subjective commentary on the position of the company in its market. Unique benefits of this report are:

- In-depth analysis of the major sectors of the drug discovery tools high-content sectors, their size, growth rates and major drivers.
- Presentation of some of the emerging technology platforms, elucidating the potential areas that could gain traction in this market.
- Analysis of the partnerships and alliances the various key-sector players have forged, as well as descriptions of financing of these market participants, giving insight into potential market collaborations.

1 The terms HCS and HCA are often used interchangeably. This is due to the fact that both of these terms are frequently used by market participants to mean the same thing, so that the choice of the term used is context-dependent. In the rest of this report, we will use the term HCA preferentially to HCS. Screening traditionally describes the running of a large-scale assay campaign looking at the effects of a large number of compounds on a biological target. While the tools described in this report can be used in this sense, they can also be used in other fields of drug discovery.
• Examination of new technology platforms that seek to dominate this new market, and identification of lead positions and potential future growth areas.
• An overview of the current state of cell-based assays in drug development and the numerous opportunities that exist to increase the quality of screens using HCA.
• A profile of the HCA customer and an analysis of factors influencing the adoption of HCA technology.
• Spending projections of new equipment and reagents.

1.2 Methodology

The author of this report is a Ph.D. in biochemistry from the University of Minnesota, with many decades of experience in science writing and as a medical industry analyst. He has over thirty years’ experience in laboratory testing and instrument and reagent development technology, as well as extensive experience in senior level positions in biotech and medical service companies. The editor has a Ph.D. in medicinal chemistry from Medical College of Virginia, Virginia Commonwealth University, with postdoctoral work in molecular biology, and has worked in small and large pharmaceutical companies in the department of drug safety evaluation to support efforts in drug discovery and for commercialization of new chemical entities as drugs.

Company-specific information is obtained mainly from industry trade publications, academic journals, news and research articles, press releases and corporate websites, as well as annual reports for publicly-held firms. Additionally, sources of information include the non-governmental organizations (NGOs) such as the World Health Organization (WHO) and governmental entities like the U.S. Department of Health and Human Services (HHS) and U.S. federal agencies such as the National Institutes of Health (NIH), the Food and Drug Administration (FDA) and the Centers for Disease Control and Prevention (CDC). Where possible and practicable, the most recent data available have been used.

Some of the statistical information was taken from Biotechnology Associates’ databases and from TriMark’s private data stores. The information in this study was obtained from sources that we believe to be reliable, but we do not guarantee the accuracy, adequacy or completeness of any information or omission or for the results obtained by the use of such information. Key information from the business literature was used as a basis to conduct dialogue with and obtain expert opinion from market professionals regarding commercial potential and market sizes. Senior managers from major company players were interviewed for part of the information in this report.

Primary Sources

TriMark collects information from hundreds of Database Tables and many comprehensive multi-client research projects, as well as Sector Snapshots that we publish annually. We extract relevant data and analytics from TriMark’s research as part of this data collection.

Secondary Sources

TriMark uses research publications, journals, magazines, newspapers, newsletters, industry reports, investment research reports, trade and industry association reports, government-affiliated trade releases and other published information as part of its secondary research materials. The information is then analyzed and translated by the Industry Research Group into a TriMark study. The Editorial Group reviews the complete package with product and market forecasts, critical industry trends, threats and opportunities, competitive strategies and market share determinations.

TriMark Publications Report, Research and Data Acquisition Structure

The general sequence of research and analysis activity prior to the publication of every report in TriMark Publications includes the following items:

• Completing an extensive secondary research effort on an important market sector, including gathering all relevant information from corporate reporting, publicly-available data and proprietary databases.
• Formulating a study outline with the assigned writer, including important items, as follows:

 • Market and product segment grouping, and evaluating their relative significance.
 • Key competitors’ evaluations, including their relative positions in the business and other relevant facts to prioritize diligence levels and assist in designing a primary research strategy.
 • End-user research to evaluate analytical significance in market estimation.
 • Supply chain research and analysis to identify any factors affecting the market.
 • New technology platforms and cutting-edge applications.

• Identifying the key technology and market trends that drive or affect these markets.

• Assessing the regional significance for each product and market segment for proper emphasis of further regional/national primary and secondary research.

• Completing a confirmatory primary research assessment of the report’s findings with the assistance of expert panel partners from the industry being analyzed.

1.3 Scope of the Report

Technologies and Product Offering for HCA

This section is focused on the presentation and analysis of the technologies and associated trends in the high-content and secondary analysis space of the drug discovery tools marketplace. Specifically, in this section, TriMark presents the following:

 • Definition of HCA and why HCA is so attractive.
 • Key HCA application areas.
 • Classes of measurements possible with HCA approaches.
 • Instrumentation platforms for HCA.
 • Reagent/assay platforms for HCA.

Market Analysis of the High-Content Tools Space

This section is focused on the presentation and analysis of the market landscape for HCA tools in basic research and drug discovery efforts. This chapter complements the other chapters of this report in that it provides a qualitative and quantitative framework to describe the current market trends operative in this space, as well as providing a snapshot of the emerging trends in this space. In this section, TriMark presents the following specific market parameters:

 • Results from a primary market survey describing qualitative and quantitative parameters.
 • Experimental/research trends in HCA.
 • Instrumentation usage in HCA.
 • Reagents/assays/biotechnology usage in HCA.
 • Emerging trends in the HCA marketplace.
 • Forecast market size and growth rate for HCA.
 • Qualitative opportunities and challenges for market adoption.

Strategic Analysis of the High-Content Tools Space

This section is focused on an analysis of the landscape and strategic issues that impact the HCA space. Specifically, TriMark provides the following analyses in this section of the report:

 • Description of the marketplace, definition of the field, its structure, and the key drivers in the market.
 • Current challenges and leading-edge sectors and technologies in the HCA space.
 • Consolidated picture of the marketplace across the different segments of this HCA marketplace.
Company Profiles and Glossary of Terms in HCA

The reader should consult other TriMark Publications reports at http://www.trimarkpublications.com for a detailed discussion of the important individual market segments that are related to drug discovery tools, including DNA Sequencing and PCR Markets, Genomics World Markets, Microarray Markets, Molecular Diagnostics Markets, RNAi Markets and Stem Cell Markets. TriMark Sector Snapshots in related areas include Flow Cytometry and Protein and Antibody Microarray Markets.

1.4 Executive Summary

High-content screening technologies use numerous parallel analyses via a microscope, a flow cytometer or other equipment designed to measure intracellular events. Emerging tools and capabilities in HCA are driving a wave of new opportunities for investment on both the supply and demand sides as new hardware systems, software applications, and reagent kits enable researchers to study intracellular events on hundreds of thousands of cells per month.

HCA occupies a key market segment composed of those applications that require high levels of sample throughput, yet are complex enough whereby complex cellular events and phenotypes can be studied, including toxicity and specificity simultaneously; use of mixed cell types—primary cells, cell lines and cell subpopulations; and off-target effects. HCA seeks to assess the impact of phenotypic and cellular changes that are brought about by gene modification (such as with RNAi approaches) and/or drug (or compound) treatment.

Pharmaceutical companies are performing HCA for a number of reasons, including target validation, compound-library screening, and determination of the mechanism of action of compounds. High-throughput screening (HTS) groups in the pharmaceutical and biotechnology community are increasingly adopting high-content screening and analysis.

The following biological applications are areas in which HCA finds significant current market appeal:

- Apoptosis.
- Cell cycle control.
- Cytoskeletal assays.
- DNA damage repair assays.
- Mitogenesis assays.
- G-protein coupled receptor (GPCR)-driven signaling.
- Ion channel-driven signaling.
- Kinase-driven signaling.
- Proteasome assays.
- Stress/inflammatory response.
- Transcriptional control.
- RNAi coupled with HCA.

Important drivers of HCA are:

- The ability to make many diverse measurements on biological systems using a suite of assays and one instrument.
- Higher information output compared to traditional biochemical or cell-based assays.
- Information that is derived has spatial and temporal context—i.e., this information correlates various cellular parameters with the morphology of the cell and/or time post-stimulation.
- In the current era of an expanding number of pharmaceutical targets, it is crucial to be able to investigate a number of diverse parameters of drug targets related to their in vivo biology.
- High-content biology also enables multiple assays to be combined, different assays formats to be automated, and output data to be analyzed en bloc—i.e., HCA is multiplexable.
HCA has two clear application areas:

- Basic research to characterize biological pathways and proteins therein.
- Target identification, analysis, validation and screening in drug discovery.

The instrumentation platforms for HCA are essentially high-throughput microscopes that have associated features. The largest current market opportunity in HCA is high-content imaging and sub-cellular localization and translocation events. There are a number of related market segments that have some impact on the development of HCA; an important one is HTS. TriMark presents its analysis of the opportunities and challenges in the HCA space.

Opportunities for Market Adoption

- Biologically relevant assays—gleaning of novel spatial and temporal information.
- Investigation of targets with no current drug treatments.
- Harnessing of the power of cellular networks—study of drug selectivity and toxicity across a biological system.
- Drug and target profiling, network mapping, biomarker identification and validation.
- Complementing of macroscopic assays.
- Single cell resolution leading to measurement of new cellular parameters.
- Study of heterogeneous cell populations—primary cells, stem cells, tissue cultured cells.
- Population distribution of phenotypes in cells.
- Flexible assay formats—single cell level, sub-cellular resolution.
- Quantitative measurements can be made in mixed or rare cell populations.
- Many potential applications/assays in cell biology: cell motility, fusion-division, polarity, viability, gross morphology, endocytosis, exocytosis, receptor internalization, inter- or intracellular redistribution, signal transduction, apoptosis, oxidative stress, cytotoxicity, DNA content, organelle size.
- Creation of assays based on configuration of changes in intensity or location of cellular proteins.

Challenges for Market Adoption

- HCA assays are typically lower throughput as the biology of the assay becomes more complex.
- Complex instrumentation is required, usually with a large capital expenditure and high IT infrastructure costs.
- Unprecedented data generation and storage issues.
- Needs for data visualization, mining, retrieval and archiving—image analysis.
- Huge demands on hardware/software support.
- Need for dedicated IT and statistical analysis support teams.
- Need to incorporate the most biologically-relevant assays, rather than just any assay that can be developed.
- QA/QC steps needed throughout the process to ensure integrity of the data that is collected.
- Images—the majority of the HCA data output—are difficult to interpret.
- Lack of standardization in the HCA space—unlike the case with HTS where standards exist for data collection, QA/QC and analysis.
- Interoperability between different analysis systems across vendors does not generally exist—this slows down adoption of different platforms that have different value propositions.
- Implementation of a new technology platform—especially HCA—is exceedingly expensive. A general lack of “success stories” resulting from HCA hampers broad adoption across the pharmaceutical and biotechnology industries.
- HCA is too expensive for individual academic labs to implement—needs to be done by an institutional core facility.
- An increasing number of assays and assay formats, and their successful utilization, will enable skeptical pharmaceutical and biotechnology company customers to embrace the HCA discipline.

The initial adoption of HCA has been undoubtedly slow, but the pace is picking up rapidly. Cellomics, Inc. (acquired by Thermo Fisher Scientific Inc.) was the pioneer in this space and for many years received neither
acclaim nor any traction in the marketplace. Over the past several years, however, the community—academic/basic research, pharmaceutical research, and biotechnology—has embraced HCA and this is driving industry dollar generation in this space. HCA offers a number of elements of bona fide value to end-users: it provides more biological context to screening data, enables the quantification and understanding of toxic effects, provides basic and applied researchers the ability to visualize and quantify the real effects of an experiment from a systems biology point of view versus single data points. In comparison to the other segments of the life sciences tools space, HCA is a very small marketplace (sized currently at about $200 million, worldwide), but it offers a robust growth opportunity fueled by broader market acceptance, new applications development and integration into the “must-have” of drug discovery and development operations.

After an initial hype about HCA in the past few years followed by a lack of solid adoption of HCA industry-wide, HCA is coming back in focus and is expected to grow in size in the next few years. No doubt, currently HCA is a small market, but we and others in the industry expect good growth. HCS and secondary screening are an outgrowth of HTS, which has commanded significant attention and resources from pharmaceutical and biotechnology companies over the past decade. Currently, the challenge has moved towards analyses of sub-cellular organization and morphology, and these are major facets of HCA.